
OPENMRS

Published : 2011-10-27
License : None

1

INTRODUCTION
1. OPENMRS AROUND THE WORLD
2. A BRIEF HISTORY
3. EXAMPLE: AMANI CLINIC

2

1. OPENMRS AROUND THE WORLD

OpenMRS clinical and research locations as of 2011.

OpenMRS is an electronic medical record system (EMR), designed for use in the developing
world and first established in 2004. Today, the system has evolved into a medical informatics
platform used on every continent, supporting health care delivery and research in an extremely
wide variety of contexts.

Our world continues to be ravaged by pandemics of epic proportions, as untold millions of
people are infected with diseases such as HIV/AIDS, multi-drug resistant tuberculosis, malaria,
and many others. Many of these infections occur in developing countries, where lack of
education and resources contribute to scores of preventable deaths. Prevention and treatment
interventions on this scale require efficient information management, which is particularly
critical as clinical care must increasingly be entrusted to less skilled providers. Whether for lack
of time, lack of money, or no access to software developers, most health care programs in
developing countries manage their information with simple spreadsheets or small, poorly
designed databases--if they have any electronic infrastructure at all. Most health care records
in the developing world are still maintained on paper.

As a response to these challenges in developing countries, OpenMRS was created as a medical
record platform--a rising tide which we hope will lift all ships. It is designed to offer a better
tool for information management, but also to reduce unnecessary, duplicate efforts. In the
years since its inception, the OpenMRS community has grown from a handful of organizations
to a massive collaborative effort by both groups and individuals, all focused on creating
medical record systems and a corresponding implementation network that allows self-reliance
in system development, even in resource-constrained environments.

Since its beginning, OpenMRS has been based on the principles of openness and of sharing
ideas, software and strategies for deployment and use. The system is designed to be usable in
very resource-poor environments and can be modified with the addition of new data items,
forms and reports without the need to write complicated application code. It is intended as a
platform that organizations can adopt and modify, avoiding the need to develop a system
from scratch.

And indeed, organizations around the world are doing just that. OpenMRS is now in use in
clinics in Argentina, Botswana, Cambodia, Congo, Ethiopia, Gabon, Ghana, Haiti, Honduras, India,
Indonesia, Kenya, Lesotho, Malawi, Malaysia, Mali, Mozambique, Nepal, Nicaragua, Nigeria,
Pakistan, Peru, Philippines, Rwanda, Senegal, South Africa, Sri Lanka, Tanzania, The Gambia,
Uganda, United States, Zanzibar, Zimbabwe, and many other places. This work is supported by
many individuals and organizations, including international and government aid groups, NGOs,
and for-profit and non-profit corporations.

3

OpenMRS is not only in use in many different places, but it is also being used to meet many
different needs. In Kenya, it is used to support health care delivery for hundreds of thousands
of patients at a network of over 50 clinics--some connected by typical networks, but many
where the connection requires offline synchronization to external storage that can be
physically transported between sites! Another NGO uses a central OpenMRS server connected
to clinics in multiple countries via satellite Internet connections. In Malawi, creative individuals
with a talent for technology have created a mobile cart running OpenMRS that physicians roll
around their clinic, interacting with the system using a touchscreen. In Rwanda, the national
ministry of health has worked to roll out a connected national health care system using
OpenMRS. In the United States, OpenMRS is used to track patients at large sporting events, for
mobile providers of health care to homeless people, and as a personal health record that
allows cancer patients to share treatment and home health care information with caregivers
and family members.

OpenMRS in use at TRAC Plus Clinic in Kigali, Rwanda.

In the last several years, use of mobile technology has increased dramatically, particularly in the
developing world. In some developing countries, there are more mobile phones than people!
Facilitated by other open source projects, OpenMRS can be integrated with SMS messaging,
allowing community health workers to add information about adherence to medication
regimens to a patient's record, as they make rounds through villages in rural Africa. Elsewhere,
mobile phone applications are used to guide these community volunteers in home-based HIV
testing and counseling, enrolling prospective patients from the comfort of their own homes.

Besides clinical care, the platform can also be used in research settings. In the United States,
OpenMRS has been used both in training medical informatics students, as well as in conducting
various research projects in the fields of public health. In Peru OpenMRS is used as the research
database for a large study of drug resistant tuberculosis funded by the US National Institutes
of Health. Because the system has been designed as an extensible platform, it is very easy for
researchers to adapt OpenMRS to do what they need.

4

2. A BRIEF HISTORY

One of OpenMRS's birthplaces--Moi University Teaching and Referral Hospital, Eldoret, Kenya (2004)

Throughout the 1990s, an academic partnership flourished between Indiana University School
of Medicine in the United States and Moi University in Eldoret, Kenya, providing Kenyan medical
students with access to health care training. This program continued to grow for several years
until a severe outbreak of HIV/AIDS in Western Kenya caused the program to rethink its goals,
at which point the Academic Model for Prevention and T reatment of HIV/AIDS (AMPATH) was
created. The number of patients in Kenya continued to grow, and basic IT systems including
Microsoft Access were used to monitor patient care.

In February 2004, the amount of data had become too large for AMPATH's existing systems,
so their medical director invited Burke Mamlin, from the Regenstrief Institute in Indianapolis,
United States, to visit the site and evaluate how improvements in medical informatics
technology could improve AMPATH's data management. Regenstrief had long been recognized
as a leader in medical informatics research, and Burke brought his colleague Paul Biondich along
with him on the visit to Kenya. It quickly became apparent that a new system was needed. Paul
and Burke began to design the data model for a new medical record system for AMPATH,
which would go on to become OpenMRS.

At the same time, a Boston-based non-profit named Partners In Health (PIH) was pioneering
the use of web-based EMRs in developing countries. They had built the PIH-EMR, which they
were using to support the treatment of multi-drug resistent tuberculosis in Peru, and HIV in
Haiti. But Hamish Fraser, PIH's director of the EMR project, was worried: PIH was about to
expand into Rwanda, Lesotho, and Malawi, and he feared it would be difficult to maintain their
home-built system in 5 countries.

In September 2004, Paul and Burke met Hamish at the World Congress on Medical and Health
Informatics (MedInfo) conference in San Francisco. It became apparent that the three shared
similar goals and needs, so they agreed to work collaboratively to develop a system that
would be suitable for the various needs of humanitarian work in African nations and beyond.

5

Paul and Burke hired developer Ben Wolfe to begin work on programming an early prototype
of OpenMRS, based on their previous work at AMPATH and Regenstrief. Several months later,
PIH's lead developer Darius Jazayeri joined the project, merging PIH-EMR's functionality into the
new system. The previous systems at AMPATH focused on data entry, while at PIH, the focus
was more on clinical workflow. The new system combined features of both the AMPATH and
PIH systems.

Because of the strong cooperation between PIH and Regenstrief and the long distances
involved, it became clear that an open source software model of development was the best
way to sustain and grow the platform, and the OpenMRS project was born.

While the collaboration between Regenstrief and PIH continued and the new system was being
designed, the groups were looking for additional support in Africa. They turned to their
colleague Chris Seebregts, from the South African Medical Research Council (MRC). Chris was
already heavily involved in the field of medical informatics throughout sub-Saharan Africa, and
brought with him a wealth of knowledge about the needs of informatics
implementations. Seebregts had been adapting OpenMRS for use in South Africa and started
to build up a community of implementers of the software around the world. His work led to
massive growth of the OpenMRS community (now nearly 2,000 strong as of late 2011). In
February 2006, AMPATH launched OpenMRS in Kenya, and PIH brought it to Rwinkwavu,
Rwanda, in August of the same year. The South African MRC first switched on the system at
Richmond Hospital in KwaZulu-Natal at the end of 2006.

As both the OpenMRS application and open source community grew, they gathered the
attention of many other large projects and agencies. Some of these have extended both
financial and consulting support over the past several years, including:

The United States Center for Disease Control (CDC)
Canada's International Development Research Centre (IDRC)
National Institutes of Health Fogarty International Centre
The Millennium Villages Project of the Earth Institute, Columbia University
The Rockefeller Foundation
World Health Organization

In an effort to broaden participation in the project around the world, OpenMRS began
participating in the Google Summer of Code (GSoC) program in 2007 . GSoC provides
university students who wish to participate in open source development projects with a
stipend and a close mentoring relationship with an experienced project team member.
Participation in the program has continued since then--OpenMRS is now one of the larger open
source projects in the program, boasting a large class of alumni, a number of whom continue
to contribute to the project. Many of these alumni come from the developing world, and some
have gone on to successful software development careers.

6

Any early gathering of OpenMRS implementers and developers in Cape Town, South Africa.

One of the aims of the OpenMRS community is to help build local capacity in the places where
it is used. To that end, participants in the community are encouraged to develop programs
and processes that encourage entrepreneurship and the creation of partnerships to grow the
field of medical informatics, particularly in the developing world. For example, in Kigali, Rwanda,
Partners In Health jump-started a local training program known as E-Health Software
Development and Implementation (EHSDI). This 9-month course conducted in partnership with
the Rwanda Development Board and the Kigali Institute of Science and Technology (KIST) was
designed to teach students to develop medical information systems. It includes extensive
training in using the OpenMRS platform.

The number of individual and organizational volunteers who participate in the OpenMRS
community has continued to grow, tripling in size between 2010 and 2011. These individuals
participate in various ways, from documentation and bug reports, from training and providing
support to other community members. The release of OpenMRS 1.8 was made possible by the
assistance of over 50 contributors.

Further, collaborations with other open source software organizations such as Open Data Kit
and Pentaho have produced volunteer contributions to OpenMRS, and commercial consulting
organizations such as ThoughtWorks Inc. have contributed many hours to developing and
improving OpenMRS.

At the close of 2011, the OpenMRS community is preparing to launch an independent not-for-
profit organization to help support the project's needs as it grows. The goal of this
organization will be to provide technical infrastructure and community management, to assist
collaboration and cooperation of project volunteers throughout the world, and to provide
training and support to those who seek to implement OpenMRS as a key part of a medical
informatics strategy in clinics, hospitals, and government health organizations.

From its humble beginnings as a solution to a problem in a small African town, OpenMRS has
become the largest open source health care project on the planet. Between 2006 and 2011,
OpenMRS at AMPATH in Kenya has recorded over 111,000,000 points of data for over 180,000
patients, helping to save many thousands of lives. Every day, similar stories are retold
somewhere else around the world with the assistance of thousands of volunteers. The
OpenMRS community continues to grow, and we are excited that you're interesting in joining us.
Regardless of your background or interests, there is a way for you to both contribute and gain
from the work of others in the OpenMRS community.

7

3. EXAMPLE: AMANI CLINIC

We assume if you're reading this book that you're interested in
deploying OpenMRS to support clinical care in the real world. To bridge
the divide between theory and practice, and to illustrate the sometimes
challenging process of deploying a large health-care information system,
we have used the example of the fictional Amani Clinic as a case study
throughout this book.

Every time you see this image in the book, you will learn how Amani
Clinic used the information discussed to plan and implement OpenMRS.

While a single example could never possibly capture all the complexity of the many different
contexts in which OpenMRS might be used, we hope it will serve as inspiration to think about
how your environment may be similar or different. We also hope that as you read, you will
start to consider the questions you need to ask to begin to design and implement your own
installation of OpenMRS.

ABOUT THE AMANI CLINIC

Our fictional case study, Amani Clinic in Kisiizi, Uganda.

Kisiizi is a small town in Southwest Uganda, over 40 kilometers from the nearest large city.
Much of the fame of Kisiizi is based on its hydroelectric power generating station and its
relatively large hospital, which handles most of the health care for the region.

Just over 2 years ago, a European-based NGO provided funding to help launch a new health
care facility we'll call "Amani Clinic" in the town. This clinic was opened specifically to address
the need for maternal and child health (MCH) care in Kisiizi and the surrounding areas.

8

Since its opening, the clinic has been very successful in establishing itself, and has attracted a
full staff of doctors, nurses, and assistants. New patients, both pregnant women and new
mothers, are continually being registered in the clinic, but there is very little information
available about the efficacy of the work in the clinic, or the outcomes for its patients.
Therefore, the funding agency has requested that the clinic work to implement an information
system, to help better monitor and evaluate the health care outcomes of the patients over
time, and to help the clinic scale up to see more patients more efficiently. The agency
recommended that the clinic consider using OpenMRS, which had been successfully used by
other projects funded by that agency in other countries.

The funding model provided for some information and communication technology (ICT)
infrastructure to get the project started, as well as for some staffing support. However,
deciding how to allocate this money was left up to the clinic's local management. After
receiving the grant funding, the director of the site hired Claudine, a graduate of a medical
informatics training program in neighboring Rwanda to help lead the effort. This newly-hired
informatics manager, in turn, hired Daniel, recent university graduate from Kampala with
expertise in ICT infrastructure and system administration.

Since the clinic was opened, doctors and nurses have used paper forms to collect data about
their patients. These forms are stored in folders and kept in a locked file room until a
patient's appointment. When the patients arrive, they are given their folder to carry with them
as they talk with the various health care providers they will see during their visit. Each of these
providers completes the relevant paper forms to add information about the visit. The forms
are added to the patient's folder, which is returned at the end of their visit.

Clinical staff were concerned when they heard about the upcoming deployment of OpenMRC,
because of the possibility of changes to the way they are used to working. However, the
informatics manager has assured them that they can continue to use the familiar paper
forms. When a patient arrives at the clinic, they will be registered by a patient registration
clerk. After the patient's visit is complete, a data entry clerk will enter the information from
that visit into OpenMRS.

Many people in Kisiizi have basic ICT skills, and there is a local Internet cafe, supported by an
NGO that provides basic ICT training to local residents. Two recent students have been hired
as the first patient registration and data entry clerks for the clinic.

Meanwhile, the system administrator has finished his preparation work and has deployed a
basic local area network (LAN) to connect a server that will host the OpenMRS application to
PCs in the file room, in the clinic manager's office, and in the ICT room. The LAN is connected
to the Internet, although the connection isn't very fast and often goes offline. The server is
powered by an uninterruptible power supply (UPS), that will ensure it stays running despite any
fluctuations in the local power grid!

Through the rest of this book, you will follow the progress of the people at the Amani Clinic as
they install OpenMRS, customize it to fit the needs of their clinic, and use OpenMRS from day
to day, first to enter data and then to extract it for patient visits and for reporting to their
funding agency on an ongoing basis.

9

PLANNING
4. IS OPENMRS FOR YOU?
5. IDENTIFYING YOUR NEEDS
6. TRANSITIONING TO OPENMRS

10

4. IS OPENMRS FOR YOU?

A clinician compares her paper records with OpenMRS in Rwanda.

This chapter will help you to decide whether OpenMRS is the right clinical application for your
organisation.

Why have an electronic medical record (EMR) system? First, you need to clearly identify your
reasons for adopting a computerized medical record system. Without a clear need or
anticipated benefit, sustained use will be difficult. Many adopters use OpenMRS to gather
information about direct patient care for analysis and outcome improvement. It can also
reduce the effort of reporting to 3rd parties. Supporting clinicians during the process of direct
patient care is also possible--but this requires further customization.

WHERE OPENMRS FITS BEST

OpenMRS is a patient-centric application, meaning data is captured about interactions between
a health care provider and a patient. Your main information needs should also focus on direct
patient care provided. If you primarily intend to capture data about something other than the
patient (for example, about lab specimens), you should consider other alternatives.

OpenMRS is designed to manage patient data longitudinally, linking multiple interactions over
time into a single patient chart. Having this complete patient history available empowers
clinicians to make more informed decisions about care, while also enabling a deeper analysis of
patient health in order to draw more meaningful conclusions on improving outcomes. If you
only care about individual patient visits, and not about linking those together into a longitudinal
chart, then OpenMRS may not be the right tool for you.

TECHNICAL CAPACITY REQUIRED TO MANAGE OPENMRS

OpenMRS requires a fairly sophisticated team of implementers to install and run. (See the
chapter "T ransitioning to OpenMRS".) At minimum, you will need ongoing resources with
knowledge and skills in three areas:

11

1. Medical information management, to ensure data is captured properly and in a way
that will support meaningful use in the future.

2. System administration, for installation and maintenance of the OpenMRS server, local
area network, backups, and local ICT infrastructure.

3. In addition, for further customization to meet specific clinic needs, some software
development skills may occasionally be required.

Of these three areas of capacity, it is most important that the system administrator be at the
clinic or a contractor in close proximity to the clinic. The other areas can more easily be made
up of external team members that support the clinic during strategic cycles of system
improvement.

OTHER WAYS TO FIND OUT IF OPENMRS IS FOR YOU

OpenMRS is powerful software and has the potential to help your organisation reach its goals,
but it may not be the right choice for every organisation. Here are some ways that you can
find out whether OpenMRS is right for your organisation:

Read this book!
Play with a demonstration site.
Download and explore the OpenMRS Standalone.
Talk to others who use OpenMRS.
Talk to an OpenMRS consultant.

Demonstration sites

OpenMRS hosts a demo site at http://openmrs.org/demo/ which runs a very basic version of
the latest released version. However, it has not been configured in a way to support a typical
deployment. Specifically, it lacks medical information management content--it lacks good
forms for data entry and does not have any reports configured for interpreting and extracting
information.

OpenMRS Standalone

If you have technical skills or are feeling adventurous, you can download and set up a local
version of OpenMRS, that is a version that is stored on your local computer rather than on a
server on the internet. You'll still access it through a browser, but it will only be visible on your
computer. The advantage of a test installation is that you can configure OpenMRS in the way
that you want to use it, and experiment with your data. See the chapter "Installation and Initial
Setup".

Talking to others who use OpenMRS

If you know of another organisation that uses OpenMRS, talk to them about their experience.
The more similar they are to your organisation, the more useful their experiences will be. In
any case, you will gain valuable insight from their knowledge.

If you don't know anyone that is using OpenMRS, consider joining the weekly OpenMRS
Implementers Forum. The session regularly includes presentations and demonstrations from a
range of international users. For more information about the meeting, see the OpenMRS
Wiki: http://go.openmrs.org/book-impforum

Talking to OpenMRS consultants

There is no official list of OpenMRS-endorsed companies that provide professional services for
the platform. However, a quick email to the OpenMRS Implementers or Developers mailing lists
requesting professional support should result in a prompt reply and
recommendation. See: http://go.openmrs.org/book-mailinglists

AMANI CLINIC EVALUATES OPENMRS

12

http://openmrs.org/demo/
http://go.openmrs.org/book-impforum
http://go.openmrs.org/book-mailinglists

At the Amani Clinic, the newly-hired medical informatics manager was
already familiar with OpenMRS. However, because he was new to the
clinic and to the field of maternal health, he started research other
organizations that were using OpenMRS for maternal and child health
care clinics. After joining one of the weekly Implementers Forum
meetings, he learned of a group in Nigeria doing exactly that, and had
several follow-up conversations with them. They agreed to collaborate
on projects as much as possible once Amani had OpenMRS up and
running.

13

5. IDENTIFYING YOUR NEEDS

Discussing requirements and needs at TRAC Plus clinic in Kigali.

This chapter covers some basic strategies for identifying your organizational needs, and how
OpenMRS might help. It does not go into detail about what OpenMRS does or how it stores
data -- you will find that in other chapters. Instead, we encourage you to first take a step back
and think about your organization.

YOUR ORGANIZATIONAL GOALS AND PRACTICES

For now, forget about technology and instead think about your organizational goals and
processes. Here's a list of questions to start:

What are the high level goals of your organization?
What are the teams and staff in the clinic? What roles exists? What functions does each
role perform?
What tasks are staff involved with on a day to day basis?
What services does the clinic provide to your patients? What activities are involved?
What other 3rd-party or government organizations do you report to? What information
is included in each of these reports?

Answering these questions will probably help you think of more related questions. Make sure
you consider them thoroughly.

TAKE ADVANTAGE OF INSTITUTIONAL KNOWLEDGE

As you think about your patients and how they interact with your organization, talk to your
clinical and administrative staff--both those who have been around a long time, and those who
have just joined. Talk to as many people as you possibly can to get a complete picture of
every service provided to patients.

People generally want to be positive in describing their work places, so you may need to ask
some people multiple times. Get physical or electronic copies, or pictures of all paper forms if
possible. Figure out where (e.g., specific rooms and desks) data is recorded onto paper and by
whom. Write an overview of current practices and define specific shortcomings that could be
addressed by using an electronic medical records system.

14

Note that practices may vary seasonally, for example if the hospital is much busier due to
increased malaria during rainy season or malnutrition before harvest.

MAP YOUR NEEDS TO OPENMRS

OpenMRS has been designed to be flexible and adaptable, based on input from many different
partners, but it may not be an exact fit for the ways that your organization currently works.
Doing things the "OpenMRS way" could mean adapting your workflow and adopting best
practices in medical informatics. Be pragmatic and flexible, and think about whether your
current working practices might need to change.

Remember that OpenMRS offers many opportunities to capture and analyze information in
new ways not previously possible. Taking advantage of these new possibilities might possibly
lead to positive changes and improvements for your organization.

DO NOT "REINVENT THE WHEEL"

The open source ethos of OpenMRS extends beyond just the application, to a much larger
open community where ideas and experiences are shared. There are many existing resources
available in the form of pre-built OpenMRS features (modules) and content that a new
implementer should take advantage of. You should explore the following resources before
building anything new.

Reuse an existing concept dictionary

A well-constructed, mature concept dictionary (see the "OpenMRS Information Model" chapter)
is a strong foundation for any OpenMRS Implementation.

The Millenium Villages Project (MVP) maintains a well-curated concept dictionary. If this
dictionary is applicable to your domain of care, you should strongly consider using it. The best
way to learn about this dictionary is through a partner project, the Maternal Concept Lab.

http://go.openmrs.org/book-mcl

Other OpenMRS implementers can also help advise you about other concept references for
your domain. Read the "Getting Help from the OpenMRS Community" chapter for more
information.

Adapt existing forms

Implementers should evaluate data collection forms built by other OpenMRS users before
creating new custom forms for their specific needs.

Implementers across the OpenMRS community have invested a lot of resources in ensuring
that their forms reflect clinical best practices, international standards, and current research.
These forms have already been optimized for electronic data entry. Many OpenMRS partners
develop forms using medical informatics experts that may not be available to all projects.
Finally, creating forms is time consuming--those resources could be redirected to other efforts.

The OpenMRS Form Bank is a new community-driven project which is beginning to collect
existing forms from other users. Visit http://go.openmrs.org/book-formbank for details, or
contact other implementers for help. Read the "Getting Help from the OpenMRS Community"
chapter for more information.

Explore the module repository

Implementers should consult the OpenMRS Module Repository at
http://modules.openmrs.org/ before considering customization through software development.

There is a good chance that someone has created a module to address needs you may have.
Read the "Customizing OpenMRS with Plug-in Modules" chapter for a list of recommended
modules.

15

http://go.openmrs.org/book-mcl
http://go.openmrs.org/book-formbank
http://modules.openmrs.org

AMANI DISCOVERS THEIR SPECIFIC NEEDS

Once the clinic determined they would indeed use OpenMRS, they began
thinking specifically about how they would integrate their existing
processes into the workflow supported by the software. As the newly-
hired medical informatics manager, Claudine knew she should speak with
everyone working in the clinic and watch them during a typical day to
understand how they work. When she spoke to them, she assured them
that OpenMRS would help to make their work easier, and they would still
be using the same overall processes they were familiar with.

Claudine found many resources within the OpenMRS community, including pre-existing concept
dictionaries and forms that had been used in other clinics. She was able to take these artifacts
and adapt them to Amani's paper forms that were already in use. Starting out with the work
of others saved quite a bit of time.

16

6. TRANSITIONING TO OPENMRS

A paper-based patient register book at an African OpenMRS clinic.

This chapter outlines steps that typically make up a OpenMRS project, and should be read by
people about to embark on a OpenMRS project. Some of this information may be obvious to
experienced project managers. A comprehensive guide to project management is beyond the
scope of this book, but we have included some high-level process considerations to get you
started thinking about what needs to happen.

We recommend you try to build a structured implementation process. It's important to plan
carefully--the decisions you make during this process require substantial investments of
resources, and you will be living with your choice for the foreseeable future.

When you start out on a new OpenMRS project, you should spend time thinking about (at
minimum):

Which people will be involved in the project
Business goals of using OpenMRS
How you will approach the initial configuration
What ongoing support you will need
Costs associated with ICT infrastructure
T raining and documentation
Change management

PEOPLE AND THE PROJECT TEAM

Your project implementation team should include clinic staff:

1. Management are aware of funding obligations and 3rd party reporting requirements.
2. Health care providers are focused on improving patient care.
3. Administrative staff are specialists of workflow issues and clinic processes.

The team could also include the following people that may or may not be from the clinic:

17

1. A system administrator is in charge of installing and maintaining OpenMRS inside of the
clinic's ICT infrastructure.

2. Medical informatics expert(s) create clinical documentation and ensure that data is
managed properly in the system. Develop reports.

3. (Optional) A project manager or coordinator. For larger implementations, this person
works to hold people accountable to finishing their work in a timely manner, and ensures
the project is on track.

4. (Optional) Software developers may be needed for locations that decide to customize
the system.

It's very important to include clinical staff (for example nurses, data entry clerks, and others) in
your implementation team from the earliest phases of the project so that the resulting
deployment is ultimately useful for them and easy for them to use.

Managing an OpenMRS project will require a major time investment from people within your
organization, even if you employ an external consultant. Organizations often under-estimate
the amount of time that will be required from their staff in implementing an enterprise ICT
project. This time investment includes items such as training, modifying existing processes, and
providing new or updated information to relevant people. Deploying OpenMRS is no different.
It's not something that can be added to the end of an already busy schedule--we urge you to
keep this in mind and take it into consideration when planning.

GOALS

By this point in the project, you should have a good idea of what indicates a successful
OpenMRS implementation for your clinic. This could be something like reduction of time to
prepare month-end reports by 50%, or increase antiretroviral treatment (ART) in HIV-infected
pregnant women by 25%. Your goals should be specific, measurable, attainable, relevant,
timely--or SMART .

These goals will help you in directing and managing your project. For example, if the project
group wants some customization that requires budget and effort, your overall goals will help
you decide whether or not to consider that customization. Your goals will help you to focus on
why you are implementing OpenMRS and what you want to achieve in the long run.

INCREMENTAL ADOPTION

It often makes sense to divide the implementation process into smaller, more manageable
sections, which can be implemented in discrete stages or iterations. Implementing in stages
allows people to get used to changes gradually without feeling overwhelmed, and allows your
implementation team to be responsive to feedback from users during the process.

Another reason people choose to develop iteratively is that it is very hard for users to
correctly or fully explain their requirements at the beginning of the project. Giving people
hands-on experience of an early version of the system helps them understand how it works
and what might be possible. They can then provide you with valuable feedback, and they
might articulate requirements that they not previously identified.

The Amani Clinic chose to introduce change iteratively. First they started
using the system for patient registration. This affected only the
administrative staff without impacting the clinical staff. Later they
started doing retrospective data entry, which included paper forms for
clinicians that had minor changes, as well as training a new data entry
clerk.

Pilot projects

Larger multi-site implementations may wish to develop a pilot approach to help reduce risk. In
this scenario, you would only deploy OpenMRS at one site and learn about the process in a
more controlled way. You can then incorporate what you've learned into
a coordinated implementation process for other sites.

18

ONGOING SUPPORT AND DEVELOPMENT

It is a mistake to think about an OpenMRS project as a one-off installation that will meet the
needs of your organization for the foreseeable future. Organizations are always changing and
evolving. Your medical record system should evolve with you, otherwise it will eventually
become out-of-sync with the organization.

Once you have been using OpenMRS for a while and staff are comfortable with it, you will likely
want to take advantage of additional functionality. Each improvement or new piece of
functionality that you decide to implement in OpenMRS will take resources, so you'll want to
plan ahead for these.

Even if your organizational needs don't change, you need to plan for ongoing support of
OpenMRS, including:

Keeping your system up-to-date with security patches
Upgrading to the latest version of OpenMRS (not always necessary, but OpenMRS is
improving all the time and your users will thank you for the improved usability and
functionality each time you upgrade)
Upgrading the modules you use to fix bugs and improve features
Maintenance of your server and network infrastructure

For more information, see the "Maintenance" chapter.

TRAINING

Training is also an important part of any OpenMRS implementation project. Your training could
take many forms depending on the needs of your users, but it often makes sense to spend
resources (e.g., time and money) on formal and reusable training resources such as user guides,
lesson plans, and other materials.

T rying to cover everything in one training session probably won't be effective. People will want
and need time to digest the new ideas they learn and use them in their daily work, and you
must anticipate staff turnover. Instead, consider holding smaller training sessions that
introduce concepts and specific functionality, followed by periods of testing, piloting and
feedback. Customize your training for your audience--not everyone needs to sit through a
two-hour training session on data entry if only a single person is responsible for this role.
When possible, train people to become trainers. This increases peoples' sense of ownership in
your OpenMRS implementation, and helps people to better remember what they learn.

T raining is an ongoing process. New employees will need to be trained when they start, and
people familiar with the system can benefit from learning about more advanced topics.
Sometimes, people will need further training when there are significant upgrades or new
functionality is added to OpenMRS or a module you use.

CHANGE MANAGEMENT

Introducing an electronic medical record system will cause changes in workflow and processes
at your organization. These changes may be "political" and cause challenges in your
organization, or they may be more practical and technical changes. Either way, too much
change at the same time is often difficult and stressful.

To help, give people time to accept and support each change so that they share in ownership
of the new system, rather than feeling as if something has been forced on them. Focus on
simple tasks at the beginning of deployment and introduce more difficult tasks as people start
to better understanding OpenMRS. Show staff how the new system will make their work easier
and where their feedback has been incorporated.

Good planning can minimize the risks around change, but it is important to be flexible within
your plan. Unforeseen things often occur, and a plan that is too rigid could prevent you from
reaching the best solution.

19

GETTING STARTED
7. INSTALLATION AND INITIAL SETUP
8. OPENMRS INFORMATION MODEL
9. GETTING AROUND THE USER INTERFACE

20

7. INSTALLATION AND INITIAL SETUP

An OpenMRS server in Uganda.

You can download OpenMRS from the OpenMRS web site.

http://openmrs.org/download/

There are two ways to install OpenMRS: Standalone, and Enterprise. You must have Java 6 or
higher installed on your system to run OpenMRS.

OpenMRS Standalone provides a simplified installation option with an embedded database and
web server. It is a great way to evaluate and explore OpenMRS, letting you get a local version
up and running within minutes, and includes download options with sample data. OpenMRS
Standalone should run fine for smaller installations (fewer than 10,000 patient records), but if
you are setting up a larger installation, we recommend using the Enterprise installation. If you
are not sure which makes sense, you can start with a standalone installation and migrate your
data to the enterprise version later.

OpenMRS Enterprise is appropriate for larger installations. If you already have a Java servlet
container and a database installed, and you want to set up OpenMRS to use these resources,
you should also use OpenMRS Enterprise.

OPENMRS STANDALONE

To install the standalone version, download the ZIP file and decompress it, then double-click
the openmrs-standalone.jar file to run it. The first time you run this file, it will install OpenMRS
and open your browser to the new OpenMRS instance.

Do not delete or rename any files or folders after decompressing the ZIP file. These files
and folders are required by the standalone installer.

Alternatively, from the command line, you can navigate to the decompressed folder and run
the following command:

java -jar standalone-1.1.jar

21

http://openmrs.org/download/

On Linux, you can also double-click on the file named run-on-linux.sh. If you are prompted for
how to run it, just select run. Alternatively, you can use a command line shell to navigate to the
decompressed folder and run the following command:

./run-on-linux.sh

Upgrading Standalone

To upgrade a copy of OpenMRS Standalone, do the following:

1. Stop the previous version of OpenMRS Standalone and exit the application.
2. Download and extract the most recent version of OpenMRS Standalone.
3. Copy your database directory from the previous version to this new OpenMRS

directory.
4. Copy your openmrs-standalone-runtime.properties from the previous version to this

new OpenMRS directory.
5. Install OpenMRS Standalone as described above. The new version of OpenMRS will run

with your old data.

Logging in

By default, the initial username and password are as follows:

Username: admin
Password: Admin123

You must immediately change the admin password after installation for security purposes. To
change your password, click My Profile in the upper right of OpenMRS, and choose the
Change Login Info tab. Update your password, then click Save Options. You can also change
your username, and provide your real name, on this screen.

Stopping and Restarting

As long as OpenMRS is running, you can return to the application by opening the following URL
in your browser.

http://localhost:8081/openmrs-standalone/

Before you change certain preferences, such as the port on which MySQL or Tomcat runs, you
must stop the application.

To stop the application, use the Stop button in the user interface, or choose File > Quit.
Alternatively, run the JAR file on the command line with a -stop parameter.

You can restart the GUI by clicking Start, or double-clicking on the JAR file again. Alternatively,
you can run the JAR file with a -start parameter.

By default, OpenMRS runs the MySQL database on port 3316, and the Tomcat server on port
8081. To use a different port, stop the application, then change the port number in
the openmrs-standalone-runtime.properties file or in the GUI, and restart. To override the
port from the command line, run the JAR file with a -tomcatport or -mysqlport parameter.

Changing the port number will change the URL used to access the application. To access the
application, you can choose File > Launch Browser, or run the JAR file with a -
browser parameter.

OPENMRS ENTERPRISE

You must have Apache Tomcat and MySQL installed on your system before installing the
enterprise version of OpenMRS.

Download the Enterprise WAR package from

http://openmrs.org/download/

22

http://openmrs.org/download/

Navigate to the Tomcat Web Application Manager and enter your Tomcat administrator
credentials.

http://localhost:8080/manager/html

Browse to the location of the openmrs.war package, and deploy it.

The initial setup which follows may take some time. At the end of the process, the Web
Application Manager will refresh, and /openmrs should be displayed in the list of applications.
Tomcat should also start the application (Running = T rue).

Open the OpenMRS web application to complete the initial setup process.

http://localhost:8080/openmrs

Getting Started with OpenMRS Enterprise

The first time you run OpenMRS, the setup wizard will help you configure your installation.
Follow the instructions in this wizard to set up your database, and populate it with test data if
necessary.

To change your configuration later, stop the application, edit the file openmrs-
runtime.properties, and restart the application. On Windows, you can probably find this file in
this location:

C:\Documents and Settings\YOURUSERNAME\Application Data\OpenMRS
or
C:\Windows\system32\config\systemprofile\Application Data\OpenMRS

On Mac OS X or Linux systems, it is probably located in this location:
~/.OpenMRS
or
/usr/share/tomcatX/.OpenMRS

After you have finished configuring OpenMRS, reload the application in the Web Application
Manager. Open the login page, typically at this URL.

http://localhost:8080/openmrs

If Tomcat is installed on another server or another port, replace localhost or 8080 as
applicable.

Use the administrator username and password you specified in the configuration wizard to log
in. If you did not specify a username and password, try using the default username admin and
password Admin123.

Upgrading OpenMRS Enterprise

To upgrade a copy of OpenMRS Enterprise, do the following:

1. Use the Tomcat Web Application Manager to stop the previous version of OpenMRS.
2. Download the most recent version of OpenMRS Enterprise.
3. Install OpenMRS as described above. The new version of OpenMRS will run with your old

data.

AMANI CHOOSES THE ENTERPRISE VERSION

23

Although Amani Clinic is small, they decided to install the Enterprise
version. Claudine is very familiar with Apache Tomcat and MySQL, and
decided he would like more control over the system. She installed
Ubuntu Linux on the physical server, then installed Java 6, MySQL, and
Tomcat. After doing so, she downloaded the openmrs.war file and
installed it in the Tomcat application server. Excluding download time for
the software, she was able to complete the process in less than one
hour.

24

8. OPENMRS INFORMATION MODEL

Reference books line a shelf in a rural African clinic.

This chapter explains terms and concepts which are useful to understand as you install and
use OpenMRS.

DATA

The actual information you want to record in OpenMRS is called Data. Examples of Data in
OpenMRS are Patients, Encounters, and Observations. To support this data, and describe its
meaning, you need additional Metadata.

When a user deletes a piece of data in OpenMRS, the information actually remains in the
database. It is marked as voided, so that it will not show up in the interface, but it is not
immediately deleted from the database. If a user deletes a piece of data by accident, an
administrator can unvoid it to return it to the system. To permanently delete data from the
database, an administrator must purge that data. Typically, this should never be done in a
production system.

METADATA

The fundamental expectation of OpenMRS's design is that you will customize it for your clinical
program's use case. The system has no built-in idea of the patient's weight or seeing the
patient in an outpatient visit. Instead, you can configure these things yourself, to match your
project's workflow. Generally speaking, the things that you need to configure in order to
describe the real patient information you will be capturing are referred to as Metadata. An
example of a piece of metadata is a Location that represents a hospital.

An administrator may also retire metadata in OpenMRS. This does not mean that the
metadata is deleted, but rather that it is not intended to be used going forwards. Old
information that refers to the retired metadata remains valid. An administrator may
unretire metadata if it becomes relevant to active use again. If no actual data refers to a
piece of metadata, an administrator may purge the metadata to permanently remove it from
the database.

25

For example, the hospital you refer patients to closes. Therefore, you can no longer refer
patients there. This Location can now be retired in OpenMRS. This would not invalidate the fact
that many patients were referred there in the past.

CONCEPTS AND CONCEPT DICTIONARY

The most important part of the system's metadata is the Concept Dictionary, which is a list
of all the medical and program-related terms that you will use as questions and answers in
Observations. This dictionary does not need to be complete when you begin using OpenMRS.
You should expect new terms to be added and old terms to be retired as your use of the
system evolves. It is better to start with a pre-populated Concept Dictionary, rather than
starting from scratch yourself. See the chapter "Sharing Concepts and Metadata" for more
details.

Every question you ask about a patient needs to be defined by a Concept. (For example, to
record a patient's weight you need a Concept like Weight in kilograms.)

If you want to ask a question that has a fixed set of coded answers, those answers are also
Concepts. (For example, the question concept Blood Type may have 4 different answer
concepts: A, B, AB, and O)

PERSONS

Every individual who is referred to in any patient's record in OpenMRS must be stored in the
system as a Person. Most persons will also be Patients or Users.

Names

A person can have one or more names, one of which must be marked as the preferred name.
The preferred name will be displayed in search results and patient screens.

Addresses

A person may have zero or more contact addresses. You may configure the format of these
addresses for your particular locale.

Person Attributes

To support your local needs, you can define additional pieces of information about the people
in your system, on top of those that are natively supported by OpenMRS. You can define the
datatype of a Person Attribute, as well as any constraints on the possible values, using
metadata. This metadata is called a Person Attribute Type.

Person Attributes are suitable for storing other information. But historical values of person
attributes are not retained. For example, you should use a person attribute to record a
patient's contact telephone number. This information may change, but if it does so, the system
need only store the most recent value, and need not retain previous values. It is
not appropriate to use a person attribute to store something like the patient's height, which is
recorded at a given point in time, but can be expected to change and should be tracked as it
does so.

PATIENTS

Anyone who receives care in OpenMRS must be a Patient (for example, anyone who has an
Encounter or who is enrolled in a Program). Every Patient must have at least one Identifier,
which is explained below.

A Patient is also a Person, meaning they must have at least one name and they may have
addresses.

Patient Identifier

26

The Patient Identifier is a medical record number assigned by your facility, used to identify and
re-identify the patient on subsequent visits.

A Patient Identifier Type defines the format of a particular kind of patient identifier. For
example, you might define that Amani ID is an identifier type that is required for every
patient; the format is 2 letters followed by 6 digits and uses a particular check digit1 algorithm.

RELATIONSHIPS

A Relationship is a bidirectional link between two Persons in OpenMRS.

The metadata describing a particular kind of relationship is a
Relationship Type which defines the names of each direction of the
relationship.

At the Amani Clinic, it is necessary to use relationships to link a mother's
patient record to the patient record of her children. One might also use
relationships to record the link between a patient and their primary care provider.

ENCOUNTERS

A moment in time where a patient is seen by a provider at a location, and data is captured.
Generally speaking, every time you enter a form in OpenMRS this creates an Encounter.

If a patient visits a clinic, checks in at registration, is seen by a doctor, and has meds dispensed
in the pharmacy, this would be recorded as 3 Encounters.

The metadata that describes a kind of encounter is an Encounter Type. These are displayed
in the user interface, and you may also search against them.

LOCATIONS

A Location is a physical place where a patient may be seen.

Locations may have a hierarchy, for example Children's Ward might be a location within the
location Amani Clinic.

You might also store physical areas (for example Eastern Province, or California) as
Locations. You should not use Locations to represent logical ideas like All District Hospitals.

OBSERVATIONS

An Observation is one single piece of information that is recorded about a person at a
moment in time.

Every observation has a Concept as its question, and depending on the datatype of the
concept, it has a value that is a number, date, text, Concept, etc.

Most of the information you store in OpenMRS is in the form of Observations, and most
Observations happen in an Encounter. When you enter a form in OpenMRS, typically one
Encounter is created with anywhere between tens or hundreds of Observations.

Note that an individual Observation is valid only at one moment in time, and it does not carry
forward. You may query the system for the last observation for pregnancy status but this
does not tell you whether or not the patient is pregnant at any point after the moment of
that observation.

Examples of observations include Serum Creatinine of 0.9mg/dL or Review of
cardiopulmonary system is normal.

Observation Groups

27

http://objavi.booki.cc/tmp/openmrsguide-en-2011.10.27-18.22.23.pdfToGBih/openmrs-information-model/openmrs-information-model#InsertNoteID_6

Sometimes a single Observation is not sufficient to capture an entire piece of patient
information, and you need to use multiple Observations that are grouped together.

For example recording that a patient had a rash as an allergic reaction to penicillin would need
to be stored as two observations plus a third one that groups the previous two together:

1. Concept = "Allergen", coded value = "Penicillin", group = (3)
2. Concept = "Reaction", coded value = "Rash", group = (3)
3. Concept = "Allergic Reaction Construct", group members = (1), (2)

ORDERS

An Order is an action that a provider requests be taken regarding a patient.

For example a provider could order a Complete Blood Count laboratory panel for a patient.

An Order only records an intention, not whether or not the action is carried out. The results of
an Order are typically recorded later as Observations.

Prescribing a medication is a Drug Order. A drug order can be placed for a generic drug,
represented by a Concept (for example, 500mg of Ciprofloxacin, twice a day). If you are
using OpenMRS to manage a formulary of specific medications (i.e., Drugs in OpenMRS), you
may also record Drug Orders against those. For example, a drug order might be one 500mg
tablet of Ciprofloxacin, twice a day.

ALLERGY LISTS

OpenMRS lets you manually maintain an Allergy List for a patient, including the allergen,
reaction, severity, etc.

This list is managed separately from Observations: observing an allergic reaction to a drug
does not automatically add an Allergy to the list.

Unlike an Observation (which happens at one moment in time), an Allergy is longitudinal data,
with start and end dates.

PROBLEM LISTS

OpenMRS lets you manually maintain a Problem List for a patient. This list is managed
separated from Observations: observing that the patient has "Diagnosis Present = Diabetes"
does not automatically add a Problem to the list. Unlike an Observation (which happens at one
moment in time), a Problem is longitudinal data, with start and end dates.

PROGRAM ENROLLMENTS, WORKFLOWS, AND STATES

A Program represents an administrative program or study that a patient may be enrolled in
(for example, Child Nutrition Study or DOTS Tuberculosis Treatment Program).

A Program Enrollment represents the fact that a patient is enrolled in one of these
Programs over a time period at a Location. This is longitudinal data with a start date and end
date.

A Program can also define administrative Workflows, and possible States the Patient may
have within those workflows. An initial state is one that a Patient is allowed to start in when
they are first enrolled in a Program. A terminal state is one that closes the Program
enrollment if the Patient is placed in it.

For example a research study on infant nutrition might have a workflow called Study
Enrollment Status with the states:

28

Patient Identified (initial)
Mother Consented to Study
Study Complete (terminal)
Lost to Followup (terminal)

These states are meant to represent administrative statuses, not clinical ones. For example
putting a patient in a Loss to Followup state represents an official declaration and will not
happen automatically even if no encounters are entered for the patient for several months.

FORMS

A Form represents an electronic form that may be used for entering or viewing data. The
basic OpenMRS system does not define a specific technology for entering forms. You will need
to use one of the community-developed form entry modules. See the chapter "Data Entry" for
more details.

The Form Entry (Infopath) and XForms modules rely on a Form Schema, where you define
which Concepts are used on the Form. The HTML Form Entry module does not require you to
manage the schema.

USERS, ROLES, AND PRIVILEGES

A User in OpenMRS is an account that a person may use to log into the system.

The real-life person must be represented by a Person record in OpenMRS, and a person may
have more than one user account. If you want a patient to be able to view her own record in
OpenMRS, then you need to attach User account to the Patient record.

A Role represents a group of privileges in the system. Roles may inherit privileges from other
roles, and Users may have one or more Roles.

A Privilege is an authorization to perform a particular action in the system. The list of
available privileges are defined by the core system and by add-on modules (for
example, Delete Patients and Manage Encounter Types), but you need to configure which
Roles have which Privileges while you are configuring your system.

THE INFORMATION MODEL IN USE AT AMANI CLINIC

A patient named Asaba arrives at Amani Clinic, where the registration
clerk James creates her electronic record and stores her contact phone
number as 312-555-7890. On paper the Nurse, Kissa, records Asaba's
weight as 61.5kg and orders a pregnancy test. James enters these onto
an electronic screen.

From the perspective of the OpenMRS model, we have the following
metadata:

The nurse, Kissa (a Person)
The registration clerk, James (a User)
Contact Phone Number (a Person Attribute Type)
Weight, in kilograms (a Concept, with class Finding and datatype Numeric)
Urine Pregnancy Test (a Concept, with class Test)
Amani Clinic (a Location)
Outpatient Visit (an Encounter Type)
Outpatient T riage Form (a Form)

When Asaba is first seen at the registration desk, James creates the following data:

A Patient (Asaba)
A Person Attribute (type = Contact Phone Number, value = 312-456-7890).

After Asaba sees the nurse, who gives a paper form to James, he creates more data:

29

An Encounter with:
patient = Asaba
type = Outpatient Visit
form = Outpatient T riage Form
location = Amani Clinic
provider = Nurse Kissa
creator = Registration Clerk James

An Observation (in that encounter), of Weight in kilograms = 61.5.
An Order (in that encounter), for Urine Pregnancy Test

CHECK DIGITS

A check digit is an extra digit that is added to the end of an identifier, and depends on the
rest of identifier. It allows OpenMRS to determine whether an identifier has been mistyped. For
example using a Luhn check digit, "1234-1" is valid, but "1234-5" is incorrect. It is a strongly-
recommended best practice to use check digits in all patient identifiers that you assign.

http://en.wikipedia.org/wiki/Check_digit

30

http://en.wikipedia.org/wiki/Check_digit

9. GETTING AROUND THE USER

INTERFACE

An OpenMRS implementer-programmer gives a demonstration of the system as his clinic.

This chapter gives a brief overview of key parts of the OpenMRS user interface, which will be
helpful as you read the chapters to follow.

LOGGING IN TO THE SYSTEM

OpenMRS runs as a web application, meaning you use it via a web browser. Before you can
access any pages in the system, you need to log in. To do this the first time, you will need to
know the administrator password that you chose during first-time setup. Refer to the chapter
"Installation and Initial Setup" for those details.

The OpenMRS login screen.

Users that forget their password may reset it if they have configured a secrete question, and
know the answer. The Sign up link is provided by the Request Account module, if you have it
installed.

HOME

31

In the default installation of OpenMRS, all users see the same home page after logging in. To
customize different home pages for different types of users, you can use the Role Based
Homepage module.

The default OpenMRS home page.

As shown in the OpenMRS home page above, all pages allow you to:

1. Log out and edit your profile, or
2. Change your language for the current session.

You can configure the allowed languages via a global property in the Administration page.

ADMINISTRATION

As a system administrator or manager for an OpenMRS installation, you will frequently need to
access the configuration and administration functions accessible through the Administration
page.

The OpenMRS Administration page.

1. You can access the Administration page from anywhere in the application by clicking its
link in the top-right of the screen.

2. Configuration pages for the OpenMRS core functionality are listed in the left and center
columns.

3. Configuration pages for functionality in add-on modules are listed in the right column.
4. You add/remove/start/stop add-on modules from the Manage Modules page.

32

VIEWING AND CREATING PATIENTS

One of the most common actions for non-administrative users of the system is to find and
open existing patient records. If the desired patient record is not found, users may be able to
create new ones if they have sufficient privileges.

You can search for a patient by ID number. Clicking on the search result will open that patient's
dashboard. If a user does not find a patient by ID number or name, you may create a new
patient.

Finding and creating patients in OpenMRS.

PATIENT DASHBOARD

Data entry staff will spend a lot of time on the patient dashboard page. This gives access to
different parts of a patient's record and allows you to enter forms into the record.

A typical OpenMRS patient dashboard.

33

The workflow of the patient dashboard page is not efficient for a clinician who wants to
access a patient's record at the point of care. To support those workflows you should
consider downloading and installing the optional the Clinical Summary module or the HTML
Form Flowsheet module.

34

CONFIGURATION
10. CUSTOMIZING OPENMRS WITH PLUG-IN MODULES
11. MANAGING CONCEPTS AND METADATA
12. SHARING CONCEPTS AND METADATA

35

10. CUSTOMIZING OPENMRS WITH PLUG-

IN MODULES

OpenMRS has a modular architecture which allows special functionality to be easily added or
removed from the system. Modules have full access to the system and can modify or enhance
the behavior of the system. For example, the Sync module adds the ability for an OpenMRS
server to synchronize its data with other OpenMRS servers; the HTML Form Entry module
provides a way to create web-based forms for collecting data; and the Flowsheet module
adds a new way for viewing information. Modules also provide a mechanism for adapting
OpenMRS to local needs. For more information about published modules visit the OpenMRS
Wiki:

http://go.openmrs.org/book-modules

MODULE REPOSITORY

You can view available modules in the OpenMRS Module Repository:

http://modules.openmrs.org/

It is a place where you can find published modules. Each module has a page with a description,
a link for downloading, and a link to the module's documentation.

Some modules may be under development, but not yet published in the module repository.
Many of these can be seen by browsing the "modules" section of the OpenMRS Subversion
code repository

http://svn.openmrs.org/openmrs-modules/

MANAGING MODULES

You can see available modules under Administration page, Manage Modules. The listing
contains all the installed modules. You can see here their status (if they are started, stopped or
failed to start) as well as uninstall them.

36

http://go.openmrs.org/book-modules
http://modules.openmrs.org/
http://svn.openmrs.org/openmrs-modules/

1. Stop the module
2. Start the module
3. Uninstall the module

A module is distributed as a single file with the .omod extension. You can install it from the
dedicated Manage Modules section on the Administration page.

You can either point to a local path to the .omod file or find and install a module directly from
the Install from Module Repository section which connects to the module repository.

1. Choose a file and click Upload
2. Search for a module by name
3. Install the chosen module

If uploads are not allowed from the web, you can copy the .omod file into the folder:

~/.OpenMRS/modules

(Where ~/.OpenMRS is assumed to be the Application Data directory which the running
OpenMRS is currently using. You can find the precise location under Administration > Module
Properties.) After moving the file to that location, restart OpenMRS. The module will be
loaded and started.

BUNDLED MODULES

OpenMRS is delivered with some bundled modules which are included in a standard installation.
The list may differ from version to version. OpenMRS 1.8 contains:

37

HTML Form Entry

Allows anyone with basic HTML programming skills and knowledge of the OpenMRS system to
create forms which can be entered without any proprietary tools directly from a web
browser. It is a preferred form entry module. HTML Forms allow a lot of control over the
form's layout. http://go.openmrs.org/book-htmlform

XForms

Allows data entry to be done directly from any JavaScript enabled browser. The module
converts an OpenMRS form to an XForm. XForms are well-suited to forms that will be filled
out on mobile devices. http://go.openmrs.org/book-xforms

FormEntry

Allows a form's content to be designed in InfoPath, and then allows end users to fill out the
form and submit it to OpenMRS. OpenMRS is moving away from the InfoPath format because
InfoPath is proprietary and difficult to troubleshoot. http://go.openmrs.org/book-formentry

HTML Widgets

Provides a set of reusable HTML form field widgets in order encapsulate the common input
requirements for OpenMRS. It is meant to be something that developers can utilize in their
code. http://go.openmrs.org/book-widgets

Reporting

The Reporting module provides a feature-rich and user-friendly web interface for managing
reports within OpenMRS. http://go.openmrs.org/book-reporting

Reporting Compatibility

Was written for the 1.5 and later releases of OpenMRS. It contains pages and features that
were previously included into OpenMRS core code itself and are needed to run the Reporting
module. http://go.openmrs.org/book-compat

Serialization XStream

Provides an implementation of serialization/deserialization strategy using the XStream library.
http://go.openmrs.org/book-serial

OTHER POPULAR MODULES

Clinical Summary

Allows you to create clinical summaries. http://go.openmrs.org/book-clinsum

Groovy

Was created as a proof of concept (for embedding Groovy into OpenMRS) and to serve as a
base module for other modules that want to use Groovy scripting as well.
http://go.openmrs.org/book-groovy

HTML Form Flowsheet

Allows you to generically model a paper flowsheet. Provides basic functionality for embedding
small HTML Forms inside of larger HTML Forms, where each small HTML Form represents one
row in a patient chart. Additionally, the module allows you to specify any number of tabs in a
tab-based layout, each containing a distinct HTML Form. http://go.openmrs.org/book-hff

HTML Form Entry Designer

38

http://go.openmrs.org/book-htmlform
http://go.openmrs.org/book-xforms
http://go.openmrs.org/book-formentry
http://go.openmrs.org/book-widgets
http://go.openmrs.org/book-reporting
http://go.openmrs.org/book-compat
http://go.openmrs.org/book-serial
http://go.openmrs.org/book-clinsum
http://go.openmrs.org/book-groovy
http://go.openmrs.org/book-hff

WYSIWYG Form Designer for the HTML Form Entry Module. http://go.openmrs.org/book-hfed

ID Generation

Provides a facility for managing identifier generation and allocation within an OpenMRS
implementation. Introduces different identifier generation strategies including automatic and
pooled. http://go.openmrs.org/book-idg

Metadata Sharing

Allows all kinds of metadata (concepts, HTML forms, locations, roles, programs, etc.) to be
exchanged between different OpenMRS installations. http://go.openmrs.org/book-mds

Request Account

Allows users to request their own accounts, specifying their own preferred username and
preferred password. An administrator can then approve or deny pending account requests.
http://go.openmrs.org/book-reqacct

REST Webservices

The module exposes the OpenMRS API as REST web service. http://go.openmrs.org/book-rest

Role Based Homepage

Allows for administrators to define a custom "Home Page" for each defined Role within the
system. These Home Pages may be simply pages that already exist, and which particular users
would be best served to have as their default. For example, System Administrators may want
the Administration page as their default home. Alternatively, administrators can "author" new
pages within the running application for their users. http://go.openmrs.org/book-rbh

Synchronization

Fits in scenarios when you have multiple sites using OpenMRS with separate databases and you
want them to copy data to each other that is keep them synchronized.
http://go.openmrs.org/book-sync

WRITING YOUR OWN MODULE

This section covers basics of writing your own module. We encourage to contribute modules
you write to the Module Repository. You can also use our code repository for your module.
For more information how to gain access to both please visit this page

http://go.openmrs.org/book-svnrepo

In order to develop and test a module you will need to have OpenMRS installed in a version on
which you want to run your module.

To create a new module it is best to use a dedicated Maven archetype. Before you start you
will need to have maven installed. See the Maven web site at http://maven.apache.org/ for
more instructions.

The next step is to update the settings.xml file to point Maven to the Maven Module
Archetype. You can find the file in one of the following locations:

Linux: ~/.m2
Windows XP: C:\Documents and Settings\user_name\.m2
Windows Vista/7 : C:\Users\user_name\.m2

If it does not exist you need to create one. Add the following content:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

39

http://go.openmrs.org/book-hfed
http://go.openmrs.org/book-idg
http://go.openmrs.org/book-mds
http://go.openmrs.org/book-reqacct
http://go.openmrs.org/book-rest
http://go.openmrs.org/book-rbh
http://go.openmrs.org/book-sync
http://go.openmrs.org/book-svnrepo
http://maven.apache.org/

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <pluginGroups>
 <pluginGroup>org.openmrs.maven.plugins</pluginGroup>
 </pluginGroups>
 <profiles>
 <profile>
 <id>OpenMRS</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>

<archetypeCatalog>http://mavenrepo.openmrs.org/nexus/service/local/repositories/releases/content/archetype-
catalog.xml</archetypeCatalog>
 </properties>
 <repositories>
 <repository>
 <id>openmrs-repo</id>
 <name>OpenMRS Nexus Repository</name>
 <url>http://mavenrepo.openmrs.org/nexus/content/repositories/public</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>openmrs-repo</id>
 <name>OpenMRS Nexus Repository</name>
 <url>http://mavenrepo.openmrs.org/nexus/content/repositories/public</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

</settings>

Maven is a command line tool so open a console and enter the folder where you want to have
a project for your new module created. The command you need to run is:

mvn module-wizard:generate

Follow the steps of the wizard by answering the questions. In the end you should have a new
Maven project generated. To build it you just need to enter the project folder and run:

mvn install

You will find the produced .omod file for your module in the directory omod/target.

Developing a module requires from you to be familiar with the Spring framework. Read the
Spring web site at http://www.springsource.com/ for more details. There are also a few things
specific to the OpenMRS platform which you will need to remember:

The Spring web context file can be found at
omod\src\main\resources\webModuleApplicationContext.xml.
Modules are able to add and modify tables in the OpenMRS database. The files
omod\src\main\resources\sqldiff.xml and
omod\src\main\resources\liquibase.xml hold the SQL commands which can be
executed as module is installed.
Modules can extend OpenMRS core JSP pages via extension points. A module registers an
extension in omod\src\main\resources\config.xml for each extension point in the
system to which it wants to add content.

You should find extension points in the JSP pages you want to extend. Look for:

<openmrs:extensionPoint pointId="..."

It is best to learn by example, so you should look at some other modules in the OpenMRS
code repository for code snippets to reuse in your own work. Consider examining
the Webservices.rest module.

40

http://www.springsource.com/

11. MANAGING CONCEPTS AND METADATA

Having well defined Concepts is crucial for every OpenMRS installation. OpenMRS is delivered
with just a few basic concepts and it is up to you to gather the rest.

Creating Concepts is a complex task which requires expertise and experience so we do not
recommend doing it on your own. It is best to contact our community and use some of
existing Concept dictionaries like MVP or MCL. For more information on how to get in touch
with the right people, see the "Getting Help from the OpenMRS Community" chapter.

You can either enter Concepts on your own manually or use a tool like the Metadata Sharing
Module to import them. In this chapter, we will present how to enter Concepts manually via the
web interface.

CONCEPT CLASS

To start with you will need to setup Concept Classes. The standard installation includes
around 15 predefined concept classes. To view them enter the Administration page >
Manage Concept Classes.

1. Add a new Concept Class
2. Click to edit an existing Concept Class

You will see a list with names and descriptions. You can edit them by clicking on a name and
also delete by selecting check-boxes next to their names. Note that you cannot delete
Concept Classes that are used in Concepts already. There is also a link Add Concept Class to
enter new ones.

CONCEPT DATATYPE

Concept Datatypes are purposed to indicate different formats of data stored in Concepts.
They are predefined and read-only. You can view them under Administration > Manage
Concept Datatypes.

41

CONCEPT

To view Concepts available in your system click Dictionary in the top menu. You will be able
to search for particular Concepts by name or id. There is also a check-box that allows to
search for retired Concepts which are not supposed to be used anymore or are replaced with
new ones. You can also enter a new Concept from here clicking Add new Concept.

1. Open Concept Dictionary
2. Adding a new Concept
3. Searching for Concepts
4. Search results

42

Let's create a Concept to represent ANTENATAL VISIT REASON. We
will use it later in the book in a data entry form. The form for creating a
Concept allows you to enter Fully Specified Name as well as synonyms.
You can add synonyms with Add Synonym button [2]. At least one of
the names needs to be marked as Preferred with the radio button next
to it.

While creating a new Concept you need to decide on Datatype. In this
case it will be a coded Concept that is you will provide a list of answers. Answers need to be
defined as Concepts. You need to create them beforehand or else add them later.

1. Switch between languages
2. Add a synonym
3. Select Datatype
4. This section changes depending on the chosen Datatype, in this case we can edit a list of

answers
5. Allows to add mappings

43

CONCEPT MAPPINGS

Concept Mappings are added to facilitate managing Concept Dictionaries and point to other
Concepts which have the same meaning. For instance we could add here a mapping to a
Concept in the MCL dictionary. You can save the Concept now and create some answers.

Repeat the steps and create Concepts PLANNING PREGNANCY and CURRENTLY
PREGNANT of Class Finding and Datatype Boolean. The last possible answer will be OTHER
of Class Misc and Datatype N/A. After creating three new Concepts, you can edit
ANTENATAL VISIT REASON and add them as answers.

CONCEPT DRUG

To view Concept Drugs, go to Administration > Manage Concept Drugs. You can either
enter a Concept Drug by clicking its name to edit it, or you can create a new one through the
Add Concept Drug link. You must enter a name and choose one of Concepts of datatype
Drug .

METADATA

There are different types of Metadata which need to be managed. The list includes Locations,
Encounter Types, Order Types, etc. You can view and edit them easily via the Administration
page.

Patient Identifier

A patient identifier is any unique number that can identify a patient. Examples are a Medical
Record Number, a National ID, a Social Security Number, a driver's license number, etc. A
patient can have any number of identifiers. The Patient Identifier Type table defines what type
of identifiers are collected in your system.

A patient can have multiple identifiers of each type defined in your system. For example, a
patient could have five identifiers of type of "Medical Record Number" because they were seen
at five different hospitals that collected five different types of ids.

The patient search screen searches across all identifier that are still active for a patient.

New identifier types are generally created if they have different characteristics. For example,
one identifier can be only a string of numbers, another is a number with a hyphen plus a check
digit, etc.

Identifiers uniquely identify patients within the system. Different types of identifiers are
distributed by various health care systems. Some of these systems will be within your control,
so you will be able to control how identifiers are created and distributed; however, there will
likely be identifiers that are not within your control but are useful to record within your system
to aid in patient identification.

In order to see predefined identifiers types, or to add a new one, go to Administration -
Manage Identifier Types. Let's examine OpenMRS Identification Number.

44

The Regex Format and Description of format fields are empty, but you could add here a
regular expression to validate each entered identifier. For example:

\d{1,8}-\d

would allow 1 to 8 digits followed by a dash and a single digit.

It is also possible to choose one of several pre-defined Identifier validators. Here Luhn
CheckDigit Validator is used. The purpose of check digits is simple. Any time identifiers
(typically number +/- letters) are being manually entered via keyboard, there will be errors.
Inadvertent keystrokes or fatigue can cause digits to be rearranged, dropped, or inserted.
Have you ever mis-dialed a phone number? It happens.

Check digits helps to reduce the likelihood of errors by introducing a final digit that is
calculated from the prior digits. Using the proper algorithm, the final digit can always be
calculated. Therefore, when a number is entered into the system (manually or otherwise), the
computer can instantly verify that the final digit matches the digit predicted by the check digit
algorithm. If the two do not match, the number is refused. The end result is fewer data entry
errors.

INTERNATIONALIZATION

Concepts can be easily internationalized that is you can enter different Concept names for
every allowed locale. The list of allowed locales is stored in a global property
locale.allowed.list as comma separated language codes (for instance en, fr, or de). You can
edit the global property from Administration > Manage Global Properties. See this link for
the full list of ISO 639.2 language codes:

http://go.openmrs.org/book-isolang

Currently, Metadata cannot be internationalized.

45

http://go.openmrs.org/book-isolang

12. SHARING CONCEPTS AND METADATA

Working with OpenMRS forms at Hôpital Albert Schweitzer, Deschapelles, Haiti.

Instead of creating concepts, forms and other metadata yourself, you are highly encouraged
to use some which are publicly available. You can use complete concept dictionaries like MCL or
MVP as well as metadata packages which include just a fraction of dictionaries, forms,
locations, etc.

Sharing forms entails sharing associated concepts and other metadata. To facilitate this task,
the Metadata Sharing module was created. It allows all kinds of metadata (concepts, forms,
locations, roles, programs, etc.) to be exchanged between different OpenMRS installations.

Any dependent metadata will be packaged along with the exported item. For example, if you
export a concept which has coded answers, the module will package the initial concept along
with all the coded answer concepts, class and datatype. If you export a form, it will package
the form along with the encounter type, all concepts used on that form, etc.

The import process is designed in a way to help identify items in your system that are
semantically the same as the ones included in a package so that you can skip importing them
and use yours.

You can find some published forms at:

http://go.openmrs.org/book-formbank

Let's see an example of importing a form with the Metadata Sharing
module. The Amani Antenatal History form will be presented in detail
in the "Data Entry" chapter.

After installing the Metadata Sharing module, go to Administration >
Import Metadata.

46

http://go.openmrs.org/book-formbank

1. Import a new package
2. List of previously imported packages you are subscribing

To start, click the Import package button and on the next screen, point to a file you want to
import.

1. Choose a local file you want to import
2. Enter a subscription URL

The next step is to choose a trust level. As stated before, while importing a package you will
have a chance to use concepts, locations, etc. which exist in your system rather than creating
new ones from the package. If you choose to do so, you can either overwrite your existing
items or keep the ones you already have. If you choose Require Confirmation, you will be
asked to review most of the metadata before importing and decide what you want to do. The
Trust Incoming option in most cases will default to overwrite your existing metadata and will
not require confirmation. Click Next to proceed.

47

1. Items needing assessment
2. Items which will be created
3. Items to skip
4. Items in your system which will be used instead
5. Items which will be overwritten
6. Opens the assessment screen
7 . All items in the package

On the next screen, you will see some details about the package and clicking Next again will
bring you to the Import Summary page where you can assess items. As in our example, you
will have to review twenty-nine concepts.

48

The assessment screen depending on the case allows you to choose Create New, Skip if
Possible, Choose Existing - Keep Mine, and Choose Existing - Overwrite. If you select
Choose Existing you will be able to search for an existing item on your system by clicking
Choose replacement. In this example, you cannot select Create New as it would violate a
restriction that there cannot be two Concepts in the system with the same name.

Once reviewing all the items which need to be assessed, you can import the package.

A good source of concepts is the Maternal Concept Lab:

http://go.openmrs.org/book-mcl

It allows you to find concepts you need and download them as metadata packages which you
can import directly to your OpenMRS installation as needed with the help of the Metadata
Sharing module.

The Metadata Sharing module promotes decentralized management of metadata where
everyone can both create and import metadata packages.

49

http://go.openmrs.org/book-mcl

COLLECTING DATA
13. REGISTERING PATIENTS
14. DATA ENTRY

50

13. REGISTERING PATIENTS

In order to be able to fill out forms for a patient, you must first create a Patient. Often, a
registration clerk or data entry clerk will create patients in the system. You should decide
which model works best for your clinic, to prevent duplication of records.

You can create patients by clicking Find/Create Patient in the top menu.

The first step in creating a Patient is to fill out the short Create Patient form. After entering
the necessary information, click on Create Person. You can enter more details on the next
screen.

Family Name, ID Number and Identifier Type are required. Identifier type is discussed in
detail in the "Managing Concepts and Metadata" chapter.

Click Save to go to the Patient Dashboard screen, where you can see all the details, enter
forms, etc. for the newly created patient.

51

14. DATA ENTRY

An OpenMRS data entry clerk in Masaka, Uganda.

An electronic medical records system has many advantages compared to a traditional paper-
based system. Data is collected using electronic forms, and a standard template means that
each user sees the same structure, simplifying the representation of the underlying information
structure and complexity. Electronic forms also allow for basic data validation.

There are three technologies for entering form data in OpenMRS. They are compared below.

Form
Type

 Advantages Disadvantages

HTML
Forms

Easy to use
Ongoing development of new
features
Supports complex logic operations
Extendable
Allows review of forms after
submission

Requires HTML Knowledge
Not supported on mobile devices

XForms

Open source
Easy to use
Works well on mobile devices

Does not support some complex
logic operations

InfoPath

Original approach to data entry via
forms
Others may already be familiar with
the technology

Not Open Source
Runs only on Windows
Requires payment of license fees
No new development by the
OpenMRS team

52

This chapter will discuss only the HTML Form entry method. This is the simplest and most
straightforward approach to data entry. It is supported by the HTML Form Entry module
which is included with the default distribution of OpenMRS.

BASIC HTML FORM STRUCTURE

Every HTML Form must have the following minimal elements:

<htmlform>
 <p>Date of encounter: <encounterDate /> </p>
 <p>Health center: <encounterLocation /> </p>
 <p>Clinician's name: <encounterProvider role="Provider" /> </p>
...
 <p>Name of observationName of observation : <obs conceptId="xx " /> </p>
 <p><submit /></p>
</htmlform>

Form header

It is easiest to leave these essential elements in a form header section that you re-use at the
top of each form. The mandatory observation element is included below.

CASE STUDY: AMANI CLINIC

The clinicians at the Amani Clinic needed a way to capture patient
history as part of their maternal and child health (MCH) program. They
had been in contact with the Millenium Villages Project (MVP) via the
OpenMRS implementers mailing List. MVP staff shared their Antenatal
Visit form. The implementation team decided to use the History section
from the MVP form as a basis for their MCH History form.

The MVP Antenatal History section looked like this:

Step 1: Identify and create concepts

Before you create a form, you must ensure that all reference Concepts are present in the
Concept Dictionary. Because the MVP team already had a Concept Dictionary, the Amani Clinic
were able to import the Concepts they needed. If you don't have access to an appropriate
Concept Dictionary, you can also create new Concepts directly, following the steps outlined in
the chapter "Managing Concepts and Metadata".

The MVP form included fourteen different Question Concepts, as well as Answer Concepts for
[1], [3], [6], [9], [11], [13], and [14].

53

Step 2: Create the form

To create a form, click on the Manage HTML Forms link on the Administration page.

Click New Form.

Enter the basic form information and click Save.

Step 3: Create visual form structure with HTML

54

HTML forms allow you to create a structure that closely resembles your paper forms, although
it may not be precisely the same.

The degree to which your form resembles the paper form depends on your HTML layout
skills--all HTML tags are supported. Table layout is beyond the scope of this book, but there
are many resources available online.

This is the basic structure of the example HTML form, with a placeholder label inserted for
each observation:

Step 4: Insert observation elements

Next, insert a form tag for each observation in your forms. These obs tags are not HTML
tags, but are required by OpenMRS. The following sections provide examples of each Concept
Datatype used on the example form. The HTML Form Entry module provides a wide variety of
other tags. Please consult the HTML Form Reference on the wiki for full documentation along
with other examples.

http://go.openmrs.org/book-htmlref

Note: The Concept Identifier numbers used in this example will not match the Concept
Identifiers in your local OpenMRS instance.

Example 1: Date observation

To insert a Date Observation, include the Question Concept ID of any date-based Concept.
The formatting label behind the Date Box cannot be removed.

<table>
 <tr>
 <td>
 Last Menstrual Period:
 </td>
 <td>
 <obs conceptId="1427"/>
 </td>
 </tr>
</table>

Example 2: Boolean observation

55

http://go.openmrs.org/book-htmlref

To insert a Boolean Observation, include the Question Concept ID of any boolean Concept.
There are several different styles available for Boolean types.

...
<table>
 <tr>
 <td>
 High-Risk Sex:
 </td>
 <td>
 <obs conceptId="1355" style="yes_no"/>
 </td>
 </tr>
</table>
....

Example 3: Coded observation with radio buttons

This obs element is inserted with the radio button style. You must specify each Answer
Concept ID even though they are already recorded in the system as Answers for the Question
Concept. If you want to use a name other than the Concept Name for an Answer Concept, you
must include the Answer Concept Label.

To render the radio buttons vertically, insert <br \/> at the end of each label for the
previous button.

...
<table>
 <tr>
 <td>
 Reason For Visit:
 </td>
 <td>
 <obs conceptId="1433" style="radio" answerConceptIds="1435,1434,5622"
answerLabels="Planning Pregnancy<br \/ >, Currently Pregnant<br \/ >, Other"/>
 </td>
 </tr>
</table>
...

Example 4: Coded observation with multi-select checkboxes

This obs element is inserted with the checkbox button style. You must specify each Answer
Concept ID even though they are already recorded in the system as Answers for the Question
Concept. If you want to use a name other than the Concept Name for an Answer Concept, you
must include the Answer Concept Label.

Each checkbox selected actually represents an individual Observation; the Question Concept is
common but each Answer Concept is unique.

56

...
<table>
 <tr>
 <td>
 Recent Contraceptive Use:

 <obs conceptId="1635" answerConceptId="1107" answerLabel="None" style="checkbox"/>

 <obs conceptId="1635" answerConceptId="780" answerLabel="Oral Contraception"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="190" answerLabel="Condoms"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5277" answerLabel="Natural Planning /
Rhythm" style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5278" answerLabel="Diaphragm"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1378" answerLabel="Depo-Provera"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1359" answerLabel="Norplant"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1388" answerLabel="Surgery"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5622" answerLabel="Other" style="checkbox"/>

 </td>
 </tr>
</table>
...

Complete form

See Appendix B for Full HTML source.

ENTER PATIENT DATA USING AN HTML FORM

Click on Find/Create Patient from anywhere within OpenMRS.

Begin typing the patient's ID number or name, then select the patient for whom you are
entering data.

57

Click the Form Entry tab.

Select the appropriate form as shown below, then fill in the patient data and click the Enter
Form button on the page that appears.

You can now see the completed form under the Form Entry tab of the patient's chart.

58

USING DATA
15. COHORT BUILDER
16. REPORTING
17. PATIENT ALERTS AND FLAGS

59

15. COHORT BUILDER

The Cohort Builder is a tool in the Reporting Compatibility module (included with most
OpenMRS installations) that lets you perform ad-hoc queries for patients with defined
characteristics, and combines multiple queries into more complex ones.

A cohort query returns a list of patients matching the specified criteria. It is not possible to
create lists of data elements other than patients. For example, you can use the cohort builder
to search for all patients with any weight observation > 70, but it is not possible to create a
list of all observations of weight > 70.

To use this tool, click Cohort Builder at the top of any page.

COHORT DEFINITIONS, COHORTS, AND SEARCH HISTORY

Each Patient Search is added to your search history. This history is preserved until you choose
to clear it or the web application is restarted. You may also save your search history to
preserve it for future re-use.

You may save any search (simple or combined) as a "Cohort Definition" to make it easier to
re-run that same search in the future. When you save a combined search, it includes copies of
all its component searches.

You may also save the list of patients resulting from a query as a "Cohort". The list of
members in a saved Cohort will never change. On the other hand, re-running a saved search
may produce new results.

The initial screen of the cohort builder contains several sections:

1. The top tabs allow you to run different kinds of queries.
2. Each query you perform goes into the search history.
3. The save, load, and clear buttons help keep your entire search organized.
4. After running a query, cohort members are displayed here.
5. Click this save button to save this cohort for future re-use.
6. Click these save buttons to save a previous query as a cohort definition for future re-

use.
7 . Use the link at the top of the cohort builder to load saved cohorts and cohort

definitions.

60

SEARCHING BY OBSERVATION

To search for patients who have observations matching certain criteria, choose the
Concept/Observation tab. Start typing the name of a concept that you want to search for
[1], and choose that concept from the search results [2].

If you choose a concept whose datatype is anything other than N/A, you can search for
observations whose question is the concept you selected [3]. Depending on the datatype, you
can limit this to a numeric or date range, or to specific coded answers. You can also choose
which observations you are looking for (first, last, min, max, any, none) or combine (average),
and you can specify date ranges.

This example will build a cohort of patients whose last systolic blood pressure measurement
was above 130 mmHg:

61

You can also search for any observations that have your chosen concept as an answer. (You'd
typically use this for doing a highly selective search, which you'll later filter down to something
more specific.)

In this example we search for patients who have any observation whose answer is
Hypertension, which might include both confirmed diagnoses of hypertension as well as
consults to rule out Hypertension:

SEARCHING BY DEMOGRAPHICS

Select the Patient Attributes tab to search based on simple demographic characteristics:
gender, age, birthdate, and vital status.

In this example, we search for living male patients between 45 and 65 years old:

62

SEARCHING BY ENCOUNTERS

Select the Encounters tab to search for patients based on encounters they have had. You can
search by encounter type (control-click to select multiple types), location, the form with which
the encounter was recorded, date ranges, and the number of matching encounters to look for.

In this example we search for patients who have had at least 3 encounters whose types were
either ADULT INIT IAL or ADULTRETURN:

SEARCHING BY PROGRAM ENROLLMENTS

Select the Program Enrollment tab to search for patients enrolled in a particular program, or
patients who have a particular status.

In this example, we search for patients who have ever been in the Hypertension Program:

63

COMBINING SEARCHES

After you have done several searches, the Composition tab allows you to combine them using
Boolean algebra. You can use AND, OR, NOT , or parentheses to build complex combinations of
the other searches in your history. Refer to your previous searches using the number next to
them in the Search History section.

Here, we search for patients who match a combination of the previous example queries:

64

16. REPORTING

This chapter describes how to use the Reporting module to produce a simple report on
several indicators--the type you might use for monitoring and evaluating a program.

Although this chapter will cover the basics, as your OpenMRS implementation grows, you'll want
to take advantage of the Reporting module's additional features like:

Multiple types of indicator-based reports,
Quick ways to break down indicators based on gender, age groups, etc.,
Several kinds of patient reports,
The ability to schedule regular reporting,
Easy formatting options for printed output using Excel templates, and
An API that Java developers can extend to add custom reports, indicators, and displays.

The module's full functionality is beyond the scope of this book. You can find further
documentation on the OpenMRS Wiki:

http://go.openmrs.org/book-reporting

This chapter follows after the ones on Data Entry, because you cannot actually build reports
without some data to run them on. But while planning the project you should follow the best
practice of determining what outputs you want, and working backwards from there to
determine the minimal set of data that you need to collect to produce those outputs.

BACKGROUND AND TERMINOLOGY

The reporting module is built around the idea of Definitions that are evaluated to produce
output.

Reports and data sets

In general a Report Definition can have multiple Data Set Definitions. When run, this will
produce a report with multiple data sets, which is rendered to a format chosen by the user.

Cohorts

Almost all reports produced with OpenMRS refer to groups of patients. A report may be run
on different patient groups, or require identifying or counting sub-groups of patients. The
module lets you define cohort queries (as discussed in the chapter "Cohort Builder"). When the
report is run, these queries will be evaluated to produce actual cohorts of patients.

Indicators

In this chapter, we look at a report that is based on Indicators, and specifically indicators that
look at the count of patients in a cohort in a period of time.

Parameters and mapping

Unlike in the OpenMRS Cohort Builder, reports and their underlying queries are intended to be
created once, and reused. To support this idea, reports and queries usually take parameters.
For example, a report intended to be run monthly would have Start Date and End
Date parameters, and the user would be asked for these when they generate the report.

The underlying queries in the report also typically take parameters. If the report is going to
display the number of patients enrolled in the Child Nutrition Study at the end of a given
month, it would need to have an underlying Cohort Query for "patients enrolled in Child
Nutrition Study on a date". That date would be an Effective Date parameter.

65

http://go.openmrs.org/book-reporting

When the user runs the report, they are asked for a Start Date and an End Date, but they
are not asked to specify an Effective Date. When designing the report, you will need to define
how parameters in the underlying queries obtain their values, based on the values provided by
the user when running the report. This process is called mapping.

The idea of mapping parameters is complicated. The following resources include more
information about why it is necessary, and how to do it:

http://go.openmrs.org/book-mapping
http://go.openmrs.org/book-mapvid

AMANI CLINIC'S WEEKLY REPORT

Before adopting OpenMRS, Amani Clinic used to spend significant time at
the end of every month tabulating paper registers and patient charts to
produce a monthly report for the Ministry of Health. When planning their
OpenMRS implementation, they decided that to improve their program,
they needed more immediate feedback. The clinic and Ministry of Health
met and decided on five indicators on which they wanted a report every
week. They modified their paper data collection forms to make sure
that they were capturing the right data to produce those indicators, as
well as the periodic Ministry of Health reports.

We'll focus on two of the indicators they calculated:

1. Number of female patients seen during the week, and
2. The percentage of those who were >16 years old, not pregnant, and using appropriate

family planning

DEFINING THE UNDERLYING COHORT QUERIES

Calculating the first of those indicators was very straightforward: they defined this to be any
female patient having an encounter between the start and end of the week.

The second indicator was more complicated: they had to break down both the numerator and
the denominator into multiple Cohort Queries. For the denominator they needed:

Not pregnant ("no obs for Estimated Date of Confinement with a value in the future")
Female
Age > 16 at the end of the week
Had an encounter during the week (same as the query for the first indicator)

The numerator required just one more Cohort Query, for patients who self-reported use
of contraceptive methods other than "Natural Planning / Rhythm" during the week.

BUILDING THE REPORT IN THE USER INTERFACE

Having determined how to calculate their indicators, they proceeded to build them in the
Reporting module's user interface. First, they build the low-level queries [1]. They then
composed the two indicator definitions [2] from those cohort queries. Finally, they created a
report definition [3] that included the two indicators.

BUILDING COHORT QUERIES

66

http://go.openmrs.org/book-mapping
http://go.openmrs.org/book-mapvid

The Cohort Query management page shows you the different types of queries available.
Clicking on any of the [+] links lets you create a new query of that type.

The simplest query built by Amani Clinic included only female patients:

The rest of the queries needed to include parameters. For example, the query to find patients
with any encounter between two given dates, the "on or after" and "on or before" fields were
set as a Parameter [1] and a user-friendly names "Start Date" and "End Date" were provided.

Some of the queries built in this example included parameters that weren't directly equivalent
to the Start Date and End Date of the report. The "not pregnant" query was a Date
Observation Query that included a single parameter, which they later mapped to the End
Date of the report.

67

Combining cohort queries

After Amani Clinic created the underlying queries that their report required, they built several
Composition Cohort Queries to tie them together. The most complicated query calculated the
denominator of the second indicator, "non-pregnant women, age > 16, seen during the week".

This is their composition query, which includes the two parameters Start Date and End
Date. It includes four underlying queries, with values in those queries mapped to these two
parameters. Finally, the queries are combined by AND-ing them all together.

Here, we see the seven cohort queries they built:

68

Indicators

Having built cohort queries to do the underlying calculations, they used these to build the two
indicators. The Indicators page is accessed from the Manage Report Definitions section of
the Administration page.

Since indicators are generally calculated over a time period, at a particular location, the
indicators they created contain the default Start Date, End Date, and Location parameters.
(Since the Amani Clinic was only managing a single site in OpenMRS, they ignored the
Location parameter.)

Count indicators

The simplest type of indicator is a Count indicator, which counts the number of patients who
match a Cohort Query.

They used a Count indicator to build their first indicator, shown below. The underlying cohort
query is a composition query including "Females" and "Any Encounter Between Dates".

Fraction indicators

The most useful type of indicator for monitoring program progress is the Fraction indicator,
which takes two cohort definitions representing a numerator and a denominator, and displays
this as a fraction. (It ensures that the numerator patients are a subset of the denominator.)

Amani Clinic built their second indicator as a fraction indicator. The underlying cohort query for
the numerator was a simple Coded Observation Query, while the denominator was the
Composition Query described above.

69

Period indicator report

Having created their indicators, they built a report that combined them. They used a Period
Indicator Report, which a simple way to show the indicators you have already defined.

RUNNING THE REPORT

To run this report, the Amani Clinic data manager clicks the Reporting link on the top of the
screen and selects the Program Monitoring Report. They must enter the start and end date
of the week for which to generate the report.

The output of the report includes clickable links to the lists of patients matching each
indicator.

70

7 1

17. PATIENT ALERTS AND FLAGS

It's important to actively use your data to provide feedback to users of the system, both for
clinical purposes and data quality purposes. One way to do this is with the Patient Flags
module, which can display Flags on a patient dashboard when certain criteria are met, and to
find all patients that match a set of criteria. We will briefly describe this module here, but you
can find further documentation at the following location:;

http://go.openmrs.org/book-ptflags

Using this module requires significant technical knowledge. This chapter assumes that you are
familiar with CSS, SQL, Groovy/Java, and the OpenMRS API.

First, you need to install Patient Flags module from the OpenMRS module repository, and
then go to its section on the Administration page. First, define categories of alerts [1]. Then,
you can define logic and messages for these alerts [2].

CATEGORIZING FLAGS BY PRIORITIES

From the Manage Priorities link, you can define different categories of alerts, each of which
can be decorated with custom CSS.

In this example we define two different categories of alerts, the more critical of which will be
highlighted in orange, and the other in gray. Note that you need to include the style="..." in
your style property.

DEFINING FLAGS

To set up a flag, you need to define a calculation that returns the Cohort of patients for
whom the flag should be shown. There are multiple ways to do this, each requiring a different
type of technical knowlege.

All flags, regardless of how they are calculated, let you specify text and a Priority. The text is
displayed on a patient dashboard for patients to whom the flag applies, and the Priority
controls the formatting of the flag if displayed.

Finally, you can decide whether flags are Real-Time, which means that the flags to be
displayed are calculated whenever you view a patient dashboard. If you don't make a flag real-
time, you can still execute the flag calculations on-demand as a batch.

SQL flags

The calculation behind this type of flag is a SQL statement that will be executed against the
database, and must include a select (something).patient_id ... statement. The results of this
query will be intersected with all non-voided patients to produce the Cohort for the flag.

72

http://go.openmrs.org/book-ptflags

Many system administrators know how to write SQL queries, and over time they become
familiar with the OpenMRS data model, making this type of flag very accessible. At the same
time, writing this type of flag can be error-prone. There is nothing to prevent you from
omitting a clause, such as to ensure you are only looking at non-voided data.

In this example we are searching for all patients who have carried at least 4 pregnancies.

Since SQL flags must include .patient_id in their select clause, we have to join the obs table
against the patient table, even though we aren't using that table.

Groovy flags

The most powerful type of flag allows you to write Groovy or Java code, which can call
OpenMRS's Java API and perform complex calculations on patient data. The advantage of
writing flags in Groovy is that the OpenMRS API takes care of details like ensuring you're only
getting non-voided date. The limitation is that most managers of OpenMRS systems don't
know how to write Groovy/Java code.

A Groovy flag returns a Cohort of all patients that match the calculation. In this example we
find all patients who are expected to give birth in the next 3 months, but who have not had an
encounter in the last 3 months.

73

74

ADMINISTERING OPENMRS
18. USER MANAGEMENT AND ACCESS CONTROL
19. MAINTENANCE
20. TROUBLESHOOTING YOUR INSTALLATION
21. GETTING HELP FROM THE OPENMRS COMMUNITY

75

18. USER MANAGEMENT AND ACCESS

CONTROL
Roles and Privileges are controlled through the Administration page, under the Manage
Users section.

OpenMRS uses privileges and roles to control access to data within the system. Privileges
define what can or cannot be done in the system (e.g., Edit Patients or Add Users) while roles
are used to group privileges into more manageable groupings. To make the system easier to
manage, roles can contain other roles as well as privileges. Roles inherit all the privileges of
their parent roles.

We will use this example: you are working with several privileges related to patient data—e.g.,
View Patients, Edit Patients, and Add Patients. The View Patients privilege lets users look
at patients in the system, the Edit Patients privilege lets users edit information about existing
patients, and the Add Patients privilege allows users to create a completely new patient
record within the system.

Now imagine that you need to assign the proper rules to three people: Mary the Medical
Student, Bob the Data Assistant, and Erica the Data Manager. You want medical students to be
able to view patients, but not edit or add them. Data assistants should be able to not only
view, but also edit patient data. And you want your data managers to be able to create new
patients within your system.

DESIGNING ROLE AND PRIVILEGE SCHEMES

In order to give these privileges to the relevant users, you must define a role for each of these
types of user.

 Role Privilege(s)

Medical Student View Patients

Data Assistant
View Patients
Edit Patients

Data Manager
View Patients
Edit Patients
Add Patients

Now, by defining the main roles for users of your system and assigning users to those roles,
you have a much easier system to manage and users will automatically inherit all privileges
given to their role(s). Of course, some users will have multiple roles. Now, let's take this process
one step further. While it may not seem necessary in this simple example, as your system
grows, you will likely end up with a large number of different roles. Very often, certain roles
can be defined as a combination of other roles. In our example, a Data Manager oversees the
Data Assistants and therefore should have all of their privileges plus some additional
privileges. So, let's redesign our roles slightly to show how this might work.

 Role Inherit Privileges from Role(s) Additional Privilege(s)

 Medical Student View Patient

 Data Assistant
View Patient
Edit Patient

 Data Manager Data Assistant Add Patient

76

You can see that the Data Manager role can be more clearly defined as a Data Assistant
with the extra ability to add patients to the system. In addition, if you should change or
enhance the privileges of the Data Assistant role at any time in the future, the Data
Manager will automatically adapt to those changes — for example, if you decided a month
later to allow any Data Assistant to Edit Encounters (by adding the Edit Encounters
privilege to the Data Assistant role), the Data Manager role would automatically gain the
ability to edit encounters as well.

In a common deployment scenario, you would define a role like Provider that is inherited by
Physician, Nurse, Clinical Officer, etc. You can then control most of the privileges within the
Provider role and those changes will effect all types of providers in the system. If you find that
you have to go through multiple roles and edit them to make a change, then you could likely
benefit from defining a new role that the others can all inherit from. For example, if you found
that you were constantly editing roles like Provider, Data Assistant,
and Caregiver whenever you adjusted how patient data are allowed to be viewed in your
system (i.e., affecting all users/roles that are allowed to view patient data), you might benefit
from creating a new Patient Data Viewer role, assigning it to each of those other roles, and
then managing the privileges in one place (under that new role).

Built-in roles

There are some special roles that are predefined within OpenMRS and cannot be deleted:
Anonymous, Authenticated, and System Developer. Any privileges granted to the
Anonymous role will be available to people without logging into the system. Generally,
Anonymous privileges should be kept very restricted, since patient information might
otherwise be compromised. Privileges granted to the Authenticated role are granted to
anyone that logs into your system, no matter what other role(s) they might be assigned.
Granting privileges to the Authenticated role is an easy way to grant privileges to all users of
the system. The System Developer role is automatically granted full access to the system
and should only be granted to system administrators.

Super users (system administrators) are automatically granted all privileges in the system;
therefore, you must be very careful to protect your system administrator password.

Some privileges are built into the system and cannot be deleted. Other privileges may be
added by modules. It is unlikely that you will be adding new privileges yourself, since privileges
are only useful when they are understood and used by the system. On the other hand, you will
definitely be creating new roles to fit your needs and will be managing privileges within those
roles.

CREATING ROLES

You create roles through Administration > Manage Roles.

77

1. Allows to add a new role
2. Lists all roles present in the system
3. Click a role to edit it.

If you then follow the Add Role link, you will see a form for adding a new role.

1. Enter Role Name
2. Choose Roles Privileges of which you want to inherit
3. Choose Privileges which you want this Role to have

CREATING USERS

To create these users, we'll go through Administration > Manage Users. This page also lets
you find and edit existing users.

1. Create a new User
2. Search Users by Name or Roles
3. Search results
4. Edit a single User

78

Users in OpenMRS need to be associated with Persons. You either need to create a new
Person, or attach the user account to an existing one.

In both cases you will be taken to the same Add/Edit User screen. (If you selected an existing
person, the fields in the Demographic Info section will be filled out for you.)

79

19. MAINTENANCE

OpenMRS server room in Webuye, Kenya.

Once you have installed and configured OpenMRS and it is being used to support day-to-day
clinical operations, there is still work to be done. To ensure the system runs smoothly and
error-free, use the following tips as a starting point to create a maintenance plan for your
OpenMRS installation. We recommend documenting this plan and reviewing it regularly.

SERVER MANAGEMENT

Although outside the scope of this book, it is important to keep both your OpenMRS server(s)
and client systems updated with the latest security patches. In Windows, you should use the
Windows Update tool to review and install critical system updates. If you use Linux, use either
apt-get upgrade or yum update, depending on what distribution of Linux you use.

Before upgrading MySQL, Java, or Apache Tomcat (and of course, OpenMRS) you should check
with the OpenMRS community to see how those upgrades might effect how OpenMRS runs on
your server. See the "Getting Help" section for more information.

You should also periodically check to ensure your server has plenty of free disk space.
Additionally, if you are running a Windows server, ensure your system has anti-virus software
installed and it is up-to-date.

BACKUPS

You should ensure your system has a backup strategy. Much has been written on this subject
and general knowledge about backups is beyond the scope of this book. However, there are
some specific items to consider when backing up your OpenMRS server.

80

Most importantly, you need to create a backup strategy for your MySQL database. Perhaps
the simplest way to do this is by using the mysqldump utility that ships with the database.
Ideally, you will want to shut down OpenMRS before backing up, and restart it once the backup
has completed. If you are not able to do so, or wish to have the system remain in a "read-
only" mode, you may want to use the options of mysqldump to lock tables. Consult the
MySQL documentation for details.

You should also ensure you are backing up the .OpenMRS directory. This directory, which
stores modules and configuration files, is stored in the home directory of the user which runs
the Tomcat server on Windows or Linux.

PERFORMANCE TUNING

Over the past several years, implementers of OpenMRS around the world have compiled
information about improving the performance of their systems. There are several components
of the system that may need to be tuned to ensure optimal performance. Please use the
information in the following sections as a guide and a starting point -- you will likely need to
explore what settings work best for your system.

OpenMRS settings

You may need to adjust some global properties in OpenMRS. To do this, use the Manage
Global Properties page under the OpenMRS Administration section, find the desired global
property and clear or change its value as described in the following tips, then click the Save
button at the bottom of the page.

Clear out the patient.identifierRegex global property to disable regular expression
identifier searches.
Clear out the patient.identifierPrefix and patient.identifierSuffix global properties to
disable "like" identifier searches.
Make sure that the dashboard.regimen.displayDrugSetIds global property has
concept ID numbers and not names. In other words, use "1085,1159" instead of
"ANT IRETROVIRAL DRUGS,TUBERCULOSIS TREATMENT DRUGS".
Set the searchWidget.batchSize, searchWidget.runInSerialMode and
searchWidget.searchDelayInterval global properties to tune your searches for better
performance and suit your implementation's environment. You may wish to consider the
speed of your network connection, typing skills and average number of simultaneous
users on a typical work day. You might also consider reducing the value of the global
properties person.searchMaxResults and searchWidget.batchSize to reduce the load
on the search widgets and server for better performance.

Apache Tomcat

Tomcat has several settings which may be adjusted to optimize its use of memory

Experience has shown it is best to install Tomcat from the download section at
http://tomcat.apache.org/ rather than any other source. If using Ubuntu Linux, we do not
recommend using the apt-get installer.
Increase the amount of memory allocated for Tomcat. Depending on how you start or
run Tomcat, use one of the following methods:

If running Tomcat from the command line, add the following parameters:

-Xmx512m -Xms512m -XX:PermSize=256m -XX:MaxPermSize=256m -XX:NewSize=128m

If running Tomcat as a Windows service, launch the Tomcat Monitor application. Go
to Configure > Java > Java Options and add the following to the listed settings:

-Xmx512m -Xms512m -XX:PermSize=256m -XX:MaxPermSize=256m -XX:NewSize=128m

81

http://tomcat.apache.org

If running Tomcat as a Linux service, edit the /etc/init.d/tomcat (or equivalent)
script and modify the line for CATALINA_OPTS to read as follows:

CATALINA_OPTS="-Djava.library.path=/opt/tomcat/lib/.libs -Xmx512m -Xms512m -XX:PermSize=256m
-XX:MaxPermSize=256m -XX:NewSize=128m"

Adjust Tomcat to prevent potential memory leaks. Tomcat has a default setting that
often causes memory leaks. To turn it off, open the configuration file.
<TOMCAT_HOME>/conf/web.xml
In JSP servlet definition add the following element:

<init-param>
 <param-name>enablePooling</param-name>
 <param-value>false</param-value>
</init-param>

Experiment with better garbage collection in Tomcat to prevent PermGen out of
memory errors. To use a newer version of Tomcat garbage collection, you need to add
the following to CATALINA_OPTS , as was shown above in the previous step.

-XX:+UnlockExperimentalVMOptions -XX:+UseG1GC

MySQL

Optimizing MySQL database settings will help OpenMRS to run more efficiently, especially when
as your installation grows in the size of data you are storing.

Increase the innodb_buffer_pool_size. It is the size in bytes of the memory buffer InnoDB
uses to cache data and indexes of its tables. The larger you set this value, the less disk I/O is
needed to access data in tables. On a dedicated database server, you may set this to up to
80% of the machine physical memory size. However, do not set it too large because
competition for physical memory might cause paging in the operating system. Modify the
following in MySQL's my.ini file, or add it if it is not present.

max_allowed_packet=64M

Increase the max_allowed_packet size. When MySQL attempts to work with a packet of data
larger than specified, it causes a packet too large error and closes the connection, causing
OpenMRS to stop working. Increasing this value allows MySQL to handle larger sets of data.
Modify the following in MySQL's my.ini file, or add it if it is not present.

innodb_buffer_pool_size=3G

You may also consider running a MySQL performance tuning script and making adjustments to
your MySQL configuration file based on its suggestions. One such script is available here:

http://go.openmrs.org/book-tuningscript

REPLICATION OPTIONS

Replication of your OpenMRS installation across multiple servers or multiple sites is an
advanced topic that is outside the scope of this book. However, you should be aware that
several options exist if you require access to your OpenMRS data from alternate locations.

MySQL replication

The MySQL database offers methods for replicating your database across multiple servers,
meaning it is possible to have multiple synchronized copies of your OpenMRS data. Please
consult the MySQL documentation for details. If you point an identically-configured OpenMRS
server at this replicated database, you will have a mirrored instance of OpenMRS. It is
important to ensure that if you make changes to the primary system, those same changes
take place on all servers.

Sync module

82

http://go.openmrs.org/book-tuningscript

Another option is available for OpenMRS installations with multiple sites. The community-
developed Sync module is available from the OpenMRS module repository, and allows data to
be synchronized across a network (or external data storage) using tools within OpenMRS itself.
Please search the OpenMRS Wiki for more information about the Sync module.

UPGRADING OPENMRS

The OpenMRS implementer and developer communities provide application and customization
support via mailing lists, IRC, and other means. See "Getting Help from the OpenMRS
Community" for more information.

When the development team release a new upgrade for OpenMRS, they will provide either a
new version of the OpenMRS Standalone installer or the OpenMRS Enterprise installer file to
run on your server. If using the Standalone version, follow the upgrade instructions included
with the application. If using the Enterprise version, you should be able to undeploy the
OpenMRS webapp in Apache Tomcat, and deploy the new version.

Be sure to test any upgrades on a server other than the primary server you use for normal
clinical support. Always be sure to back up your system before upgrading.

UPDATING MODULES

Supported community-developed OpenMRS modules are regularly updated, and those new
versions are published in the OpenMRS module repository. You should check for upgraded
modules regularly. Go to http://modules.openmrs.org/ or view the "Manage Modules" page
from the OpenMRS Administration page. From there, you can upgrade a module with updates
automatically by clicking Install Update, or you may manually upload the new version by
following the instructions on the page.

AMANI'S MAINTENANCE PLAN

As part of his responsibilities as ICT infrastructure manager for the
clinic, Daniel created a written maintenance plan. In this document, he has
included daily, weekly, and monthly tasks. The only daily task is an
automated one -- Daniel created a script on his Ubuntu server to stop
OpenMRS, backup MySQL and other OpenMRS files, and restart the
application. This script runs overnight while the clinic is closed. Weekly,
Claudine manually checks the disk space and runs apt-get upgrade to
update system components. Every month, Claudine checks the OpenMRS
web site for OpenMRS upgrades and upgrades to the modules the clinic uses.

83

http://modules.openmrs.org

20. TROUBLESHOOTING YOUR

INSTALLATION

Unfortunately, sometimes things do not go exactly the way you would like them to. This
chapter can help you deal with the most common problems.

We recommend using Apache Tomcat 6.0.29 to run OpenMRS. Any J2EE-compliant Java servlet
container should be able to run it, but most people who use OpenMRS are running it with
Tomcat, which makes it may be easier to get support if you encounter problems.

If you are not yet using Tomcat 6.0.29, consider upgrading Tomcat before you continue. We
recommend getting Tomcat from this link.

http://tomcat.apache.org/

When troubleshooting Tomcat, your first step should always be to review the Tomcat logs. In
Windows, these are stored at the following location.

C:\Program Files\Apache Software Foundation\Tomcat 6.0\logs

Historically, MySQL has been recommended as the database of choice to use with OpenMRS.
The newer database from the open source project MariaDB should also be compatible with
OpenMRS. Work is underway in the OpenMRS community to provide support for other
databases such as Oracle, Microsoft SQL Server, and others, but these databases are not yet
supported.

You may not be able to resolve your problem with OpenMRS using the troubleshooting
material in this chapter. That is OK -- the OpenMRS community is available to help! Check out
the "Getting Help from the OpenMRS Community" chapter for more information about how to
communicate with others, ask questions, and get answers.

SOME POSSIBLE PROBLEMS AND SOLUTIONS

OpenMRS fails to install with message "Error creating bean with name
'messageSourceServiceTarget'"

84

http://tomcat.apache.org

MySQL must be running before starting and installing OpenMRS. If it is not, you may see the
following error message in your web browser and log files when you attempt to install
OpenMRS:

org.springframework.beans.factory.BeanCreationException:Error creating bean with name
'messageSourceServiceTarget' defined in class path resource applicationContext-service.xml

Ensure MySQL is installed and running before attempting to start and install OpenMRS.

MySQL Configure Instance hangs on starting the service, or reports Error
1045

On Windows, the computer may stop responding while running the MySQL Configure Instance
tool. Most commonly, this occurs before the tool marks Starting the service as complete,
because there is already a MySQL service running.

To fix this, you should delete the pre-existing MySQL service in Windows, and try the
installation again. You can find instructions on how to do delete a MySQL service at this link.

http://www.howtogeek.com/howto/windows-vista/how-to-delete-a-windows-service-in-vista-or-
xp/

Alternatively, you may see a MySQL Error 1045, if your computer has previously had a MySQL
instance installed. This means that the root password is incorrect, and is most commonly
caused by residual data from the previous installation.

To fix this, you should delete the MySQL data directory. On Windows 7 , you may need to
reboot and delete the directory, or to use an unlocking program in order to delete this
directory.

You can also change the password that OpenMRS uses to access your MySQL database, by
editing the openmrs-runtime.properties file, as described later in this chapter.

Starting Tomcat service on Windows fails

If you cannot start the Tomcat service on Windows, try checking the Tomcat logs. You can
find the logs in the following directory.

<TOMCAT HOME>\logs

Errors like "Failed creating java C:\Program
Files\Java\jre1.6.0\bin\client\jvm.dll"

To fix this problem, search for msvcr71.dll on your hard drive, and copy that file to this
location.

C:\Windows\System32

Installing OpenMRS or running database updates fails with message “Could
not acquire change log lock”

To prevent conflicting updates, liquibase begins each update by creating a row in the
liquibasechangeloglock table. This row acts as a lock. If OpenMRS or Apache Tomcat crashes
while an update is in progress, the update may fail to complete, and this row will not be
removed from the table.

You may see the following error message in your web browser or in the Tomcat logs, the next
time you start up or attempt to install or update OpenMRS:

"Error Could not acquire change log lock"

Deleting this row from the liquibasechangeloglock table will solve the problem, and allow
installation or updates to proceed normally. To delete rows from the liquibasechangeloglock
table using a command line SQL client, run either of the following SQL commands:

85

truncate table liquibasechangeloglock;

delete from liquibasechangeloglock;

If you prefer to use a GUI client for MySQL, you should navigate to the
liquibasechangeloglock table and delete all rows from that table. When you have cleared the
table, restart Tomcat if necessary, and restart OpenMRS.

Problems connecting to Tomcat on port 8080

Other programs you have already installed may already be using port 8080. This will prevent
Tomcat using this port. Some software may also use port 8005, which should not interfere
with running Tomcat, but may prevent it from starting up correctly.

If you know what program is using these ports, you may choose to stop or remove that
program. Alternatively, you can configure Tomcat to run on a different port, by editing
Tomcat’s server.xml file to change 8080 to a different value (eg 8090).

If you need further help, see the "Getting Help from the OpenMRS Community" chapter for
more information.

Permission problems when running Tomcat as a service on Ubuntu

If you are trying to run Tomcat as a server on Ubuntu, you may run into permission issues.
The following error is typical of these problems:

java.security.AccessControlException: access denied (java.io.FilePermission
/usr/share/tomcat6/webapps/openmrs/WEB-INF/dwr-modules.xml delete)

The easiest way to solve this issue is to disable the Java security manager or similar startup
script, which you can find at this location.

 /etc/init.d/tomcat6

Edit the file and set TOMCAT6_SECURITY to no.

Use the Java security manager? (yes/no)
TOMCAT6_SECURITY=no

Tomcat stops responding after updating or reloading OpenMRS in the Web
Application Manager

Tomcat and the JVM allocate memory to a webapp each time you use the Update or Reload
functions in the Web Application Manager. When the app is destroyed or recreated, some of
this memory may not be released. If you update or reload the webapp too many times,
Tomcat may run out of allocated memory, and will stop responding. You will also see the
following error in the Tomcat logs:

java.lang.OutOfMemoryError: PermGen space

It is not possible to completely avoid this problem. However you can mitigate it by allowing
Tomcat to use more memory, or by restarting Tomcat if you have to repeatedly update or
reload a webapp.

Deploying OpenMRS using the Tomcat Manager web application fails

For various reasons, trying to deploy OpenMRS using the Tomcat Manager web application
may fail. If this occurs, you should undeploy OpenMRS using the Tomcat Manager, then stop
Tomcat.

You can do this on the command line under Linux or OS X. First, find the process ID (PID) by
running the following command:

ps ax | grep tomcat

86

This may return several lines, each starting with a number. Look for a long line that contains
something like /usr/local/tomcat or /opt/tomcat. The PID is the first number on that line. Stop
Tomcat with the following command:

kill -9 PIDPID

Finally, you can restart Tomcat as follows:

service tomcat6 start

Log back into the Tomcat Manager web application and deploy OpenMRS normally.

OpenMRS (openmrs.war) deploys successfully but fails to start

If there are issues with the OpenMRS settings for application_data_directory, openmrs.war may
successfully deploy, but thereafter fail to start. The following messages are seen in Tomcat's
logs:

SEVERE: Error listenerStart
SEVERE: Context [/openmrs] startup failed due to previous errors

Ensure that the runtime properties file exists, and that the application_data_directory is
specified in this file. Further, ensure that the directory exists, and that Tomcat has read and
write permissions to the directory.

If the directory exists as specified in the runtime properties file, and Tomcat has the
appropriate permissions, you may have security violation problems in your Tomcat
configuration. If you need further advice, consider seeking help from the community, as
described in the chapter "Getting Help from the OpenMRS Community".

Unable to log in to Tomcat Manager due to lost password

The Tomcat admin password is required to log in to the Tomcat Manager web application, to
deploy and undeploy applications, including OpenMRS.

If you have forgotten, lost, or misplaced this password, you can retrieve it from the file
tomcat-users.xml. On Windows, this is probably located at this location.

C:\Program Files\Apache Software Foundation\Tomcat 6.0\conf\

The database password or other properties are set incorrectly

If you have installed the OpenMRS Standalone application, you can modify settings by editing
the openmrs-standalone-runtime.properties file in the directory where you extracted the
ZIP package.

To modify settings for the OpenMRS Enterprise version, you should edit the file openmrs-
runtime.properties. You should find this file in one of the following locations:

On Windows systems:

C:\Documents and Settings\YOURUSERNAME\Application Data\OpenMRS
C:\Windows\system32\config\systemprofile\Application Data\OpenMRS

On Mac OS X or Linux systems:

~/YOURUSERNAME/.OpenMRS
/usr/share/tomcatX/.OpenMRS

The OpenMRS administrator account password has been forgotten

In general, when a user is locked out, the password should be reset by the administrator using
the "Edit User" page from the OpenMRS Administration page. However, in rare situations that
administrator's account may have been forgotten. The only way to reset the password for
this account is to directly modify the OpenMRS database. This should only be attempted by
advanced users, and you should always back up your database before making changes.

87

You will need to modify the users table in the OpenMRS database schema. Find the row for
the user in question and change the password and salt values to the following:

password: 4a1750c8607d0fa237de36c6305715c223415189
salt: c788c6ad82a157b7 12392ca695dfcf2eed193d7f

Some module pages throw java.lang.ClassNotFoundException

There are currently some issues with compatibility between OpenMRS and versions of Apache
Tomcat later than 6.0.29. OpenMRS modules that rely on certain custom expression language
functions will throw a java.lang.ClassNotFoundException exception.

If you encounter this issue using a version of Tomcat greater than v6.0.29, you may need to
disable any modules that rely on custom expression language functions, or install Tomcat
6.0.29 for use with OpenMRS.

Starting OpenMRS fails with message “Module file does not have the correct
.omod file extension”

OpenMRS will not start if there are non-modules in the modules directory. You may find a
message in the logs similar to these:

org.openmrs.module.ModuleException: Module file does not have the correct .omod file extension
Module: derby.log

org.openmrs.module.ModuleException: Module file does not have the correct .omod file extension
Module: velocity.log

To solve this problem, delete or move any files in the modules directory that are not modules
with an .omod extension.

In particular, the BIRT Runtime creates various log files in the modules directory when the
BIRT module is stopped. If you are using the BIRT Report module, there may be non-module
files in the OpenMRS modules directory--typically, derby.log or velocity.log . These files can
safely be moved to another location, or may be deleted.

To prevent the derby.log from being created in future, delete the directory
org.apache.derby.core_10.1.2.1 which is located under the following directory.

birt-runtime-2_2_0/ReportEngine/plugins/

MySQL packet length errors, or MySQL Error 2006

These errors occur when the client or server tries to handle data larger than the maximum
packet length. The default maximum packet length is 1MB. Some items (such as form data) can
easily exceed this maximum, causing errors when importing data into or exporting data from
the OpenMRS database.

To increase the maximum packet length allowed by your MySQL server, you should stop the
server, edit the configuration file, then restart the server. The configuration file is typically
located at one of these locations.

Windows: C:\Program Files\MySQL\MySQL Server x.x\my.ini
Linux or Mac OS X: /etc/my.cnf

Some MySQL packages come with alternative configurations (INI configurations)--make sure
you edit the one that you will be using!

This file should already contain a section with the header [archive:mysqld]. You can add the
following line below that header:

max_allowed_packet=64M

88

You can also increase the maximum packet length using the MySQL Administrator application,
by opening the Health section and changing the max_allowed_packet setting on the System
Variables tab. This setting can be increased up to a maximum of 1024M as necessary.

Depending on your MySQL client, you may also need to adjust the maximum packet length of
the client. If you are using the MySQL command line client, you can start it with an increased
max_allowed_packet by adding the following after the mysql command:

--max_allowed_packet=64M

Problems connecting to MySQL on a system with multiple MySQL
installations

If MySQL is already installed and running on your system, OpenMRS Standalone's initial setup
may be unable to create the OpenMRS user and database. You may also encounter this
problem after installation, if you have installed a "traditional" MySQL server and try to run
OpenMRS Standalone.

This problem happens because MySQL clients on UNIX-based systems always use UNIX sockets
to connect to MySQL when localhost is specified in the connection URL. This is a known
issue/limitation/bug in MySQL and is documented in more detail by the MySQL project.

http://bugs.mysql.com/bug.php? id=31577

It is possible to run OpenMRS in a separate database instance than the one already existing on
your system (for example, to run OpenMRS Standalone on a system where MySQL is already
installed). To do so, you must first ensure that the new database instance is running on a
different port.

Then, ensure that you are connecting to MySQL via TCP/IP instead of using the same UNIX
socket as the existing instance. The easiest way to do this is to use 127.0.0.1 instead of
localhost in the connection string. An alternative is to add &server.port=XXXX to the value
of connection.url in the openmrs-runtime.properties file, where XXXX is the port used by
the OpenMRS MySQL instance.

For example, if the MySQL instance used by OpenMRS is running on port 4242, the openmrs-
runtime.properties file should include one of the following lines:

connection.url=jdbc:mysql://127.0.0.1:4242/openmrs?
autoReconnect=true&sessionVariables=storage_engine=InnoDB&useUnicode=true&characterEncoding=UTF-
8

connection.url=jdbc:mysql://localhost:4242/openmrs?
autoReconnect=true&sessionVariables=storage_engine=InnoDB&useUnicode=true&characterEncoding=UTF-
8&server.port=4242

Tomcat error log contains IOException while loading persisted sessions

Apache Tomcat tries to restore the exact memory state after each restart. OpenMRS does
not depend on this feature, so you can ignore any warnings printed to the Tomcat logs that
look similar to the following:

SEVERE: IOException while loading persisted sessions: java.io.WriteAbortedException: writing
aborted; java.io.NotSerializableException:

If you find these messages annoying, you can turn off session persistence. Edit
the <TOMCAT_HOME>/conf/server.xml file and uncomment the line that includes:

<Manager pathname="" />

Java Heap Size errors

OpenMRS uses a lot of memory for caching. Certain tasks, such as exporting data, may cause a
Java Heap Size error. You can mitigate this by increasing the default memory allocation in
Tomcat.

89

http://bugs.mysql.com/bug.php?id=31577

If you are starting Tomcat on the command line, you should pass the following parameters to
increase the default memory allocation:

-Xmx512m -Xms512m -XX:PermSize=256m -XX:MaxPermSize=256m -XX:NewSize=128m

If you are running Tomcat as a Windows Service, you can increase the memory allocation by
adding this same line to the list of start parameters. Make sure that you add this to the end of
the existing parameters exactly. An extra space at the end of the line can prevent Tomcat
from starting properly. You can find the list of start parameters in the Tomcat Monitor
application, by going to Configure Tomcat > Java > Java Options, or via the Control Panel
> Services > Apache Tomcat > Properties > Start Parameters.

If you are running a 64-bit version of Tomcat as a Windows Service, you must edit the
Windows Registry to add that line to the HKEY_LOCAL_MACHINE\SOFTWARE\Apache
Software Foundation\Procrun 2.0\Tomcat5\Parameters\JavaJVM settings in the Registry.

If you are running Tomcat on Ubuntu, edit its startup script such as /etc/init.d/tomcat6 and
make the following changes:

if [-z "$JAVA_OPTS"]; then
 JAVA_OPTS="-Djava.awt.headless=true -Xmx128M"
fi

Should become:

if [-z "$JAVA_OPTS"]; then
 JAVA_OPTS="-Djava.awt.headless=true -Xmx1024M -Xms1024M -XX:PermSize=256m -
XX:MaxPermSize=256m -XX:NewSize=128m"
fi

If you are running Tomcat as a Linux service, open the /etc/init.d/tomcat script and append
change the CATALINA_OPTS variable:

CATALINA_OPTS="-Djava.library.path=/opt/tomcat/lib/.libs -Xmx512m -Xms512m -XX:PermSize=256m -
XX:MaxPermSize=256m -XX:NewSize=128m"

Memory leaks

After troubleshooting, you may determine that Tomcat or OpenMRS are having problems with
memory leaks.

To mitigate memory leak problems in Tomcat, consider enabling pooling by adding the
following element to the JSP servlet definition in the file <TOMCAT_HOME>/conf/web.xml:

<init-param>
<param-name>enablePooling</param-name>
<param-value>false</param-value>
</init-param>

If you believe you have discovered a memory leak in OpenMRS, and are comfortable looking at
the OpenMRS application code to identify where the leak is located, you may like to
troubleshoot further to find out the cause. OpenMRS developers use YourKit Profiler to
discover and debug memory and CPU consumption issues.

YourKit is kindly supporting members of the OpenMRS community with its full-featured Java
Profiler product. If you have development skills you may want to use this tool to understand
why the application is leaking memory or consuming too many processor resources. As an
active participant in the OpenMRS community, you can request a license by opening a support
desk ticket

http://go.openmrs.org/helpdesk

BUGS IN OPENMRS

If you believe you have discovered a problem that may be a bug in OpenMRS, we encourage
you to report that bug. The OpenMRS development team takes bug reports seriously and
continually fixes as many bug reports as possible for future releases. Please see our bug
report page on the OpenMRS wiki for further details and instructions:

90

http://go.openmrs.org/helpdesk

http://go.openmrs.org/bug

91

http://go.openmrs.org/bug

21. GETTING HELP FROM THE OPENMRS

COMMUNITY

A 2011 meeting of the OpenMRS community in Kigali, Rwanda.

OpenMRS is supported by a vibrant community. Whether you need help installing, using,
updating or extending OpenMRS, you can find help in a variety of places.

OPENMRS ID

OpenMRS ID is an account used to participate in most of the community resources to support
implementers and developers, and is required to use most of the tools on this page. Learn
more about OpenMRS ID and sign up online

http://go.openmrs.org/id

OPENMRS WIKI

Documentation for OpenMRS is available in the wiki.

http://wiki.openmrs.org

You can find information for users and developers, as well as details of shared modules and
other resources.

You can search for information in the wiki using the search bar at the top of the page.
Alternatively, use the links on the left of the page to navigate to the relevant section.

If you find an error in the information on the wiki, please correct it if you can! If you do not
already have an OpenMRS ID, you can register for free using the Sign Up link at the top of the
page. After logging in, you will see an Edit button at the top of most pages. Click this button,
make your changes, and click Save. If you are not certain about making an edit, just leave a
comment on the page with your questions or concerns. We appreciate your help!

MAILING LISTS

92

http://go.openmrs.org/id
http://wiki.openmrs.org

Information about the OpenMRS mailing lists, including details on how to subscribe, and
archives of past messages, are available at the following URL.

http://go.openmrs.org/lists

The implementers mailing list is a community mailing list for people using, considering using, or
otherwise interested in OpenMRS. You can ask questions, seek advice, and learn from others
on the mailing list. Search the archives for similar problems before you post - someone else
may have already answered your questions!

OPENMRS ANSWERS

OpenMRS Answers is an exciting way to ask questions about installing and using OpenMRS, and
to get answers from others in the community.

https://answers.openmrs.org/

It provides an alternative to mailing lists and IRC, and has a system of voting, badges, and
points that allows you to compete with others. An OpenMRS ID is required to log in you can
participate. OpenMRS Answers focuses on finding specific answers to specific questions. Brief
discussions can be conducted in the comments, but most discussions should be held on the
mailing lists (see above).

IRC

Internet Relay Chat (IRC) is a protocol for real-time Internet chat. The OpenMRS community use
the #OpenMRS chat room on irc.freenode.net.

For more information on how to connect to IRC visit:

http://go.openmrs.org/irc

All IRC discussions are logged and available online.

HAVING TROUBLE?

If you have problems with your OpenMRS ID, or with any of the tools listed above, please open
a support desk ticket and someone will respond to your issue.

http://go.openmrs.org/helpdesk

If you are not able to log in when creating the ticket, please remember to include your name
and contact information.

93

http://go.openmrs.org/lists
https://answers.openmrs.org/
http://go.openmrs.org/irc
http://go.openmrs.org/helpdesk

EPILOGUE
22. LEAVING AMANI CLINIC
23. ABOUT THIS BOOK

94

22. LEAVING AMANI CLINIC

We now end our visit to Amani Clinic. We saw how the clinic management
started with the idea of using a medical information system to support
the workflow of their clinic. They implemented OpenMRS to manage
their data, evaluate and report on their project's effectiveness, and
ultimately improve care for their patients.

Claudine, Daniel, James, and Kissa all had challenges in planning and
getting used to new ways of working, but we can believe that their
increased ability to better manage health care delivery will result in healthier, happier people in
the village of Kisiizi.

We hope you have found their story, along with the information presented in this book, useful
in thinking about your own situation.

As a reminder, this book serves only as an introduction to the OpenMRS medical record
system and our larger open source community. You are now a member of a new extended
family of people working together to make and improve technology for health care on every
continent. We hope you will be as excited as we are to make a difference in our communities,
and we hope to see you in our mailing lists and wikis, and hear you in our meetings very soon.

Welcome and good luck!

95

23. ABOUT THIS BOOK

This first edition of this book was created in October 2011 during the first Google Summer of
Code Documentation Sprint. We are indebted to the Google Open Source Programs Office, the
FLOSS Manuals foundation, and Aspiration for organizing this week-long event where four open
source projects (OpenMRS, Sahana Eden, OpenStreetMap, and KDE) joined forces to share
knowledge and create manuals for their user communities.

The authors for the first version were Rafal Korytkowski (Poland), Glen McCallum (Canada),
Nóirín Plunkett (Ireland), Darius Jazayeri (United States), and Michael Downey (United States).

We received proofreading, structural advice, and editing assistance from Paul Biondich (United
States), Hamish Fraser (United States), Allen Gunn (United States), Daniel Kayiwa (Uganda),
Burke Mamlin (United States), Saptarshi Purkayastha (India), Janet Riley (United States), and Ben
Wolfe (Kenya).

Photographs in this book are courtesy of James Arbaugh, Michael J. Downey, Frank Fries,
Mathew Ssemakadde, and Stephanie Taylor. The original book cover was designed by Laleh
Torabi.

We would also like to thank the countless people who have contributed to OpenMRS
documentation over the past seven years, and the writing team of "CivicCRM: A
Comprehensive Guide", all of which served as inspiration and the basis for much of this book.
The OpenMRS community thanks everyone who participated in making this book a reality.
Thank you!

96

97

APPENDICES
24. APPENDIX A: GLOSSARY
25. APPENDIX B: EXAMPLE HTML FORM SOURCE

98

24. APPENDIX A: GLOSSARY

administrative staff: Individuals who manage people or data in a clinical setting.

allergy list: A series of allergies from which a patient has or is suffering.

bug: A repeatable problem in OpenMRS.

bug report: A report created describing a repeatable problem to software developers.

bundled module: An OpenMRS module that is included with a downloaded OpenMRS
installation.

check digit: An extra digit that is added to the end of an identifier, and depends on the rest
of identifier.

clinician: A doctor, nurse, or other clinical officer who provides health care to patients.

cohort: A group of patients that can be defined by one or more common traits.

concept: The idea that encompasses any question which can be asked about a patient, an
observable point of data.

concept class: A category of OpenMRS Concepts with associated traits.

concept datatype: A descriptor of the type of data which a given OpenMRS Concept
describes (e.g., numeric, text, etc.).

concept dictionary: A list of all the medical and program-related terms used in OpenMRS as
questions and answers.

customization: The idea of adapting a system to suit one's specific, particular needs.

data: A small piece of knowledge that can be reduced to a single value.

demographics: Information about a person, typically including items like date of birth,
location, name, etc.

drug: A specific formulation of a medication represented in OpenMRS.

electronic medical record: A computer system that allows for recording, storage, and
retrieval of information related to the delivery of health care to patients.

encounter: (1) An instance of direct provider/practitioner to patient interaction, regardless of
the setting, between a patient and a practitioner vested with primary responsibility for
diagnosing, evaluating or treating the patient's condition, or both, or providing social worker
services. (2) A contact between a patient and a practitioner who has primary responsibility for
assessing and treating the patient at a given contact, exercising independent judgment.
http://www.astm.org/Standards/E1384.htm

error: A message in a computer system that describe a problem currently or recently
occurring.

flag: A visual indicator of certain criteria on a patient chart.

form: An electronic form that may be used for entering or viewing data.

Groovy: A computer scripting language that allows automation and quick performance of
tasks.

implementation plan: A written document which details specific goals and tasks in installing,
customizing, and using OpenMRS.

99

http://www.astm.org/Standards/E1384.htm

implementation team: A defined group of people working together to deploy OpenMRS in a
specific project.

implementer: Someone who has or is in process of deploying OpenMRS in a specific location
or context of use.

informatics: The study of information technology applied to a specific domain.

internationalization: The adaptation an information system or pieces of information to be
used in multiple locations.

IRC: Short for Internet Relay Chat, an online tool to communicate with others in "real time".
OpenMRS uses IRC to allow developers and implementers to collaborate and meet.
http://go.openmrs.org/irc

local area network: A method of connecting multiple computers for communication over
distances.

location: A physical place where a patient may receive healthcare services.

longitudinal: Having a goal of observing or trending over time.

mailing list: A collection of names and addresses used by a company to send material to
multiple recipients. On the internet, mailing lists include each person's e-mail address rather
than a postal address. http://www.entrepreneur.com/encyclopedia/term/82424.html

medical informatics: A discipline of studying the use of information technology to the field of
medical science.

metadata: A piece of information that describes other information.

module: A software package that extends OpenMRS functionality in specific ways. Often
developed by others in the OpenMRS community.

module repository: An online resource to find and maintain community-developed OpenMRS
add-on modules. http://modules.openmrs.org/

observation: One atomic piece of information that is recorded about a person at a moment
in time.

open source: A method of developing software where the source code is freely available for
others to examine, use, and build upon. Also a type of software development community
based around sharing of work and collaboration.

order: An action that a provider requests be taken regarding a patient.

patient: A person receiving health care services.

patient dashboard: A visual representation of a patient within OpenMRS, including his or her
demographics and other important information.

patient identifier: Any unique number that can identify a patient. Examples are a Medical
Record Number, a National ID, a Social Security Number, a driver's license number, etc.

person: Every individual who is referred to in any patient's record in OpenMRS must be stored
in the system.

person attribute: store additional pieces of information about the people in your system in
addition to those that are natively supported by OpenMRS.

pilot project: Actively planned as a test or trial.

platform: A computer system that is simple by design, intended to be customized and
adapted for use in a wide variety of contexts.

privilege: Defines what actions a user is allowed to take within OpenMRS.

100

http://go.openmrs.org/irc
http://www.entrepreneur.com/encyclopedia/term/82424.html
http://modules.openmrs.org

problem list: A list of a patient's problems that serves as an index to his or her record. Each
problem, the date when it was first noted, the treatment, and the desired outcome are added
to the list as each becomes known. Thus the list provides an ongoing guide for reviewing the
health status and planning the care of the patient. http://medical-
dictionary.thefreedictionary.com/master+problem+list

profile: An OpenMRS user's basic information, including name, user ID, and password.

program: A planned series of administrative or research events.

program enrollment: Represents the fact that a patient is enrolled in one of these Programs
over a time period at a Location.

provider: A health care professional, or group of health care professionals who provide a
service to patients.

purge: To permanently delete data from the OpenMRS database.

relationship: A description of how two persons in OpenMRS are connected, e.g., mother and
child.

retire: To make metadata unusable in the future while retaining it in OpenMRS for past
reference.

role: Represents a group of privileges in OpenMRS.

sample data: Fictional, anonymized information representing patient care within OpenMRS.
Some versions of the software include this artificial data to make it easier to plan an OpenMRS
implementation.

SMART goals: Objectives for a project that are specific, measurable, attainable, realistic and
timely.

software developer: A person who is able to program customizations or additional
functionality in OpenMRS.

state: A condition or situation; status.

super user: An OpenMRS user with permission to perform all management tasks in the
application.

system administrator: A person who is responsible for day-to-day maintenance of a
computer system or network.

uninterruptible power supply: A battery-based system that provides instant short-term
power to a computer or other devices during a power outage.

unretire: To re-designate metadata as usable.

unvoid: Make data visible in OpenMRS that had previous been voided.

user: A person who uses OpenMRS, or more specifically the data in the system representing
that person.

void: To mark data as deleted from a user perspective - but retain it in the OpenMRS
database.

wiki: A web site containing documentation and other resources for a project or organization.

workflow: A series of tasks to accomplish a goal.

101

http://medical-dictionary.thefreedictionary.com/master+problem+list

25. APPENDIX B: EXAMPLE HTML FORM

SOURCE
<htmlform>
 <!-- Autogenerated example form (template from 01-Nov-2010 -->
 <macros>
 paperFormId = (Fill this in)
 headerColor =#009d8e
 fontOnHeaderColor = white
 </macros>

 <style>
 .section {
 border: 1px solid $headerColor;
 padding: 2px;
 text-align: left;
 margin-bottom: 1em;
 }
 .sectionHeader {
 background-color: $headerColor;
 color: $fontOnHeaderColor;
 display: block;
 padding: 2px;
 font-weight: bold;
 }
 table.baseline-aligned td {
 vertical-align: baseline;
 }
 </style>

 Paper Form ID: $paperFormId
 <h2>Amani Antenatal History (v1.0)</h2>

 <section headerLabel="1. Encounter Details">
 <table class="baseline-aligned">
 <tr>
 <td>Date:</td>
 <td>
 <encounterDate default="today"/>
 </td>
 </tr>
 <tr>
 <td>Location:</td>
 <td>
 <encounterLocation/>
 </td>
 </tr>
 <tr>
 <td>Provider:</td>
 <td>
 <encounterProvider/>
 </td>
 </tr>
 <tr>
 <td>Patient Name:</td>
 <td>
 <lookup class="value" expression="patient.personName"/>
 </td>
 </tr>
 </table>
 </section>

 <section headerLabel="2. Antenatal History">
 <table border="1" cellspacing="0" class="baseline-aligned">
 <tr>
 <td>
 <table border="1" cellspacing="0">
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Reason For Visit:
 </td>

 <td>
 <obs conceptId="1433" style="radio" answerConceptIds="1435,1434,5622"
answerLabels="Planning Pregnancy<br \/ >, Currently Pregnant<br \/ >, Other"/>
 </td>
 </tr>
 </table>

102

 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Antenatal Visits #:
 </td>

 <td>
 <obs conceptId="1425"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 If Pregnant, was

pregnancy intended?
 </td>

 <td>
 <obs conceptId="1426" style="radio" answerConceptIds="1065,1066,1067"
answerLabels="Yes<br \/ >, No<br \/ >, Unknown"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Last Menstrual Period:
 </td>

 <td>
 <obs conceptId="1427"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Date of Delivery:
 </td>

 <td>
 <obs conceptId="1596"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Blood Type:
 </td>

 <td>
 <obs conceptId="1426" style="radio" answerConceptIds="152674, 152675,
152676, 152677, 152678,152679, 152680,152681" answerLabels="A+, A-<br \/ >, B+, B-<br
\/ >, 0+, 0-<br \/ >,AB+, AB-<br \/ >"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 <td>
 <table border="1" cellspacing="0">
 <tr>
 <td>
 <table>

103

 <tr>
 <td>
 High-Risk Sex:
 </td>

 <td>
 <obs conceptId="1355" style="yes_no"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 HIV Test:
 </td>

 <td>
 <obs conceptId="1356" style="yes_no" dateLabel="<br \/ >Date:"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Partner's HIV Status:
 </td>

 <td>
 <obs conceptId="1436" style="radio" answerConceptIds="664,703,1067"
answerLabels="Negative<br \/ >, Positive<br \/ >, Unknown"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 STI Treatment:
 </td>

 <td>
 <obs conceptId="1428"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 RPR/VDRL:
 </td>

 <td>
 <obs conceptId="299" style="radio" answerConceptIds="1228, 1229"
answerLabels="Reactive<br \/ >, NR"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr>
 <td>
 Last Tetnus:
 </td>

 <td>
 <obs conceptId="1428"/>
 </td>
 </tr>
 </table>
 </td>

104

 </tr>
 </table>
 </td>
 <td>
 <table>
 <tr>
 <td>
 Recent Contraceptive Use:

 <obs conceptId="1635" answerConceptId="1107" answerLabel="None"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="780" answerLabel="Oral Contraception"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="190" answerLabel="Condoms"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5277" answerLabel="Natural Planning /
Rhythm" style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5278" answerLabel="Diaphragm"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1378" answerLabel="Depo-Provera"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1359" answerLabel="Norplant"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="1388" answerLabel="Surgery"
style="checkbox"/>

 <obs conceptId="1635" answerConceptId="5622" answerLabel="Other"
style="checkbox"/>

 </td>
 </tr>
 </table>
 </td>
 <td>
 <table>
 <tr>
 <td>
 Previous Complications:

 <obs conceptId="1430" answerConceptId="113859" answerLabel="Hypertension"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="1431" answerLabel="Low Birth Weight
Baby" style="checkbox"/>

 <obs conceptId="1430" answerConceptId="119481" answerLabel="Diabetes Mellitus"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="48" answerLabel="Miscarriage"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="1171" answerLabel="Cesarean Section"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="228" answerLabel="Antepartum Hemorrhage"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="230" answerLabel="Postpartum Hemorrhage"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="130" answerLabel="Puerperal Sepsis"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="113602" answerLabel="Prolonged Labor"
style="checkbox"/>

 <obs conceptId="1430" answerConceptId="127847" answerLabel="Recto-vaginal
Fistula" style="checkbox"/>

 <obs conceptId="1430" answerConceptId="49" answerLabel="Vesico-vaginal
Fistula" style="checkbox"/>

 <obs conceptId="1430" answerConceptId="5622" answerLabel="Other"
style="checkbox"/>

 </td>
 </tr>
 </table>

105

 </td>
 </tr>
 </table>
 </section>
 <submit/>
</htmlform>

106

	OPENMRS
	1. OPENMRS AROUND THE WORLD
	2. A BRIEF HISTORY
	3. EXAMPLE: AMANI CLINIC
	ABOUT THE AMANI CLINIC

	4. IS OPENMRS FOR YOU?
	WHERE OPENMRS FITS BEST
	TECHNICAL CAPACITY REQUIRED TO MANAGE OPENMRS
	OTHER WAYS TO FIND OUT IF OPENMRS IS FOR YOU
	AMANI CLINIC EVALUATES OPENMRS

	5. IDENTIFYING YOUR NEEDS
	YOUR ORGANIZATIONAL GOALS AND PRACTICES
	TAKE ADVANTAGE OF INSTITUTIONAL KNOWLEDGE
	MAP YOUR NEEDS TO OPENMRS
	DO NOT "REINVENT THE WHEEL"
	AMANI DISCOVERS THEIR SPECIFIC NEEDS

	6. TRANSITIONING TO OPENMRS
	PEOPLE AND THE PROJECT TEAM
	GOALS
	INCREMENTAL ADOPTION
	ONGOING SUPPORT AND DEVELOPMENT
	TRAINING
	CHANGE MANAGEMENT

	7. INSTALLATION AND INITIAL SETUP
	OPENMRS STANDALONE
	OPENMRS ENTERPRISE
	AMANI CHOOSES THE ENTERPRISE VERSION

	8. OPENMRS INFORMATION MODEL
	DATA
	METADATA
	CONCEPTS AND CONCEPT DICTIONARY
	PERSONS
	PATIENTS
	RELATIONSHIPS
	ENCOUNTERS
	LOCATIONS
	OBSERVATIONS
	ORDERS
	ALLERGY LISTS
	PROBLEM LISTS
	PROGRAM ENROLLMENTS, WORKFLOWS, AND STATES
	FORMS
	USERS, ROLES, AND PRIVILEGES
	THE INFORMATION MODEL IN USE AT AMANI CLINIC
	CHECK DIGITS

	9. GETTING AROUND THE USER INTERFACE
	LOGGING IN TO THE SYSTEM
	HOME
	ADMINISTRATION
	VIEWING AND CREATING PATIENTS
	PATIENT DASHBOARD

	10. CUSTOMIZING OPENMRS WITH PLUG-IN MODULES
	MODULE REPOSITORY
	MANAGING MODULES
	BUNDLED MODULES
	OTHER POPULAR MODULES
	WRITING YOUR OWN MODULE

	11. MANAGING CONCEPTS AND METADATA
	CONCEPT CLASS
	CONCEPT DATATYPE
	CONCEPT
	CONCEPT MAPPINGS
	CONCEPT DRUG
	METADATA
	INTERNATIONALIZATION

	12. SHARING CONCEPTS AND METADATA
	13. REGISTERING PATIENTS
	14. DATA ENTRY
	BASIC HTML FORM STRUCTURE
	CASE STUDY: AMANI CLINIC
	ENTER PATIENT DATA USING AN HTML FORM

	15. COHORT BUILDER
	COHORT DEFINITIONS, COHORTS, AND SEARCH HISTORY
	SEARCHING BY OBSERVATION
	SEARCHING BY DEMOGRAPHICS
	SEARCHING BY ENCOUNTERS
	SEARCHING BY PROGRAM ENROLLMENTS
	COMBINING SEARCHES

	16. REPORTING
	BACKGROUND AND TERMINOLOGY
	AMANI CLINIC'S WEEKLY REPORT
	DEFINING THE UNDERLYING COHORT QUERIES
	BUILDING THE REPORT IN THE USER INTERFACE
	BUILDING COHORT QUERIES
	RUNNING THE REPORT

	17. PATIENT ALERTS AND FLAGS
	CATEGORIZING FLAGS BY PRIORITIES
	DEFINING FLAGS

	18. USER MANAGEMENT AND ACCESS CONTROL
	DESIGNING ROLE AND PRIVILEGE SCHEMES
	CREATING ROLES
	CREATING USERS

	19. MAINTENANCE
	SERVER MANAGEMENT
	BACKUPS
	PERFORMANCE TUNING
	REPLICATION OPTIONS
	UPGRADING OPENMRS
	UPDATING MODULES
	AMANI'S MAINTENANCE PLAN

	20. TROUBLESHOOTING YOUR INSTALLATION
	SOME POSSIBLE PROBLEMS AND SOLUTIONS
	BUGS IN OPENMRS

	21. GETTING HELP FROM THE OPENMRS COMMUNITY
	OPENMRS ID
	OPENMRS WIKI
	MAILING LISTS
	OPENMRS ANSWERS
	IRC
	HAVING TROUBLE?

	22. LEAVING AMANI CLINIC
	23. ABOUT THIS BOOK
	24. APPENDIX A: GLOSSARY
	25. APPENDIX B: EXAMPLE HTML FORM SOURCE

